Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Infrared image impulse noise suppression using tensor robust principal component analysis and truncated total variation

Not Accessible

Your library or personal account may give you access

Abstract

Infrared image denoising is an essential inverse problem that has been widely applied in many fields. However, when suppressing impulse noise, existing methods lead to blurred object details and loss of image information. Moreover, computational efficiency is another challenge for existing methods when processing infrared images with large resolution. An infrared image impulse-noise-suppression method is introduced based on tensor robust principal component analysis. Specifically, we propose a randomized tensor singular-value thresholding algorithm to solve the tensor kernel norm based on the matrix stochastic singular-value decomposition and tensor singular-value threshold. Combined with the image blocking, it can not only ensure the denoising performance but also greatly improve the algorithm’s efficiency. Finally, truncated total variation is applied to improve the smoothness of the denoised image. Experimental results indicate that the proposed algorithm outperforms the state-of-the-art methods in computational efficiency, denoising effect, and detail feature preservation.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Graph-regularized tensor robust principal component analysis for hyperspectral image denoising

Yongming Nie, Linsen Chen, Hao Zhu, Sidan Du, Tao Yue, and Xun Cao
Appl. Opt. 56(22) 6094-6102 (2017)

Hyperspectral image denoising using the robust low-rank tensor recovery

Chang Li, Yong Ma, Jun Huang, Xiaoguang Mei, and Jiayi Ma
J. Opt. Soc. Am. A 32(9) 1604-1612 (2015)

Data Availability

Data underlying the results presented in this paper are available in Ref. [65].

65. Teledyne FLIR, “FREE FLIR Thermal Dataset,” ADAS (2021), https://www.flir.com/oem/adas/adas-dataset-form/.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.