Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Regularization-parameter-free optimization approach for image deconvolution

Not Accessible

Your library or personal account may give you access

Abstract

Image deconvolution is often modeled as an optimization problem for a cost function involving two or more terms that represent the data fidelity and the image domain constraints (or penalties). While a number of choices for modeling the cost function and implementing the optimization algorithms exist, selection of the regularization parameter in the cost function usually involves empirical tuning, which is a tedious process. Any optimization framework provides a family of solutions, depending on the numerical value of the regularization parameter. The end-user has to perform the task of tuning the regularization parameter based on visual inspection of the recovered solutions and then use the suitable image for further applications. In this work, we present an image deconvolution framework using the methodology of mean gradient descent (MGD), which does not involve any regularization parameter. The aim of our approach is instead to arrive at a solution point where the different costs balance each other. This is achieved by progressing the solution in the direction that bisects the steepest descent directions corresponding to the two cost terms in each iteration. The methodology is illustrated with numerical simulations as well as with experimental image records from a bright-field microscope system and shows uniform deconvolution performance for data with different noise levels. MGD offers an efficient and user-friendly method that may be employed for a variety of image deconvolution tools. The MGD approach as discussed here may find applications in the context of more general optimization problems as well.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Mean gradient descent: an optimization approach for single-shot interferogram analysis

Sunaina Rajora, Mansi Butola, and Kedar Khare
J. Opt. Soc. Am. A 36(12) D7-D13 (2019)

Regularization of the image division approach to blind deconvolution

Sergio Barraza-Felix and B. Roy Frieden
Appl. Opt. 38(11) 2232-2239 (1999)

Hybrid high-order nonlocal gradient sparsity regularization for Poisson image deconvolution

Tao He, Jie Hu, and Haiqing Huang
Appl. Opt. 57(35) 10243-10256 (2018)

Data Availability

No data were generated or analyzed in the presented research.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.