Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Automatic evaluation of vertex structural defects on the anode surface of a low-light-level image intensifier based on proposed individual image processing strategies

Not Accessible

Your library or personal account may give you access

Abstract

In the process of microchannel plate (MCP) making and physicochemical treatment of a low-light-level (LLL) image intensifier, multifilament fixed pattern noise, also known as structural defects, is one of the most common defects in the anode surface. The appearance of this defect will seriously affect the imaging quality of an image intensifier, so it should be found in time before delivery. The traditional evaluation method of this defect relies on subjective judgment, and the disadvantage is that the division of the dense defect area and the measurement of defect gray difference (GD) are not standardized. To address this problem, an automatic evaluation method of vertex structural defects of an LLL image intensifier based on proposed individual image processing strategies is presented, which provides a digital evaluation scheme for such defects. This method is composed of two parts: quasi-circular defect detection and defect GD calculation. The first part is composed of coarse detection and fine detection. Coarse detection is to scan the anode surface and take the two ends of a pair of adjacent line segments with a large gradient sum and opposite gray change direction as the defect boundaries; fine detection is to establish the image patch from defect boundaries, extract the edge segment from the image patch, and judge whether it conforms to the shape of a circle. In order to substantiate the performance of the quasi-circular defect detection strategy, two relevant techniques are used as comparison. One is based on a Gaussian filter, and the other is based on a fixed-size window template. The comparison results show that our method, to the best of our knowledge, has the best detection performance for vertex structural defects. The second part consists of region of interest (ROI) cropping, secondary defect detection, shortest distance sequence establishment, effective distance extraction, triplet set construction, and triplet GD calculation. First, the location histogram of defects is established to cut ROI; then, the secondary defect detection is performed to extract more vertex structural defects from ROI; after that, the shortest distance sequence of defects is constructed, and the effective distances are extracted by using the structural features of multifilament. Finally, the triplet set is generated according to the effective distance, and the triplet GD is calculated based on the gray information near the triplet baseline. The GD of vertex structural defects corresponds to the maximum GD of triplets. So as to verify the effectiveness of vertex defect GD calculation strategy, several image tubes with different degrees of such defects are used for experiments, and the subjective evaluation method is used as comparison. The experimental results substantiate that this method is superior to the subjective method in locating ROI accurately and calculating defect GD quantitatively. In general, the automatic evaluation method can be regarded as an effective evaluation scheme for vertex structural defects of an LLL image intensifier.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Defect inspection for underwater structures based on line-structured light and binocular vision

Yi Wu, Yaqin Zhou, Shangjing Chen, Yunpeng Ma, and Qingwu Li
Appl. Opt. 60(25) 7754-7764 (2021)

Automated defect detection and classification for fiber-optic coil based on wavelet transform and self-adaptive GA-SVM

Ruifeng Yang, Xiaole Chen, and Chenxia Guo
Appl. Opt. 60(32) 10140-10150 (2021)

Tunable-liquid-crystal-filter-based low-light-level color night vision system and its image processing method

Tao Yuan, Zhenghao Han, Li Li, Weiqi Jin, Xia Wang, Hailin Wang, and Xiaofeng Bai
Appl. Opt. 58(18) 4947-4955 (2019)

Data Availability

No data were generated or analyzed in the presented research.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.