Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multiscale optimization of the geometric wavefront sensor

Not Accessible

Your library or personal account may give you access

Abstract

Since wavefront distortions cannot be directly measured from an image, a wavefront sensor (WFS) can use intensity variations from a point source to estimate slope or curvature of a wavefront. However, processing of measured aberration data from WFSs is computationally intensive, and this is a challenge for real-time image restoration or correction. A multi-resolutional method, known as the ridgelet transform, is explored to estimate wavefront distortions from astronomical images of natural source beacons (stars). Like the curvature sensor, the geometric WFS is relatively simple to implement but computationally more complex. The geometric WFS is extended by incorporating the sparse and multi-scale geometry of ridgelets, which are analyzed to optimize the performance of the geometric WFS. Ridgelets provide lower wavefront errors, in terms of root mean square error, specifically over low photon flux levels. The simulation results further show that by replacing the Radon transform of the geometric WFS with the ridgelet transform, computational complexity is reduced.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Correction of non-common path aberrations in pyramid wavefront sensors to recover the optimal magnitude gain using a deformable lens

M. Quintavalla, M. Bergomi, D. Magrin, S. Bonora, and R. Ragazzoni
Appl. Opt. 59(17) 5151-5157 (2020)

Direct wavefront reconstruction with the cone wavefront sensor using the inverse radon transform

Richard M. Clare, Stephen J. Weddell, and Byron. E. Engler
Appl. Opt. 62(30) 8052-8059 (2023)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.