Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Impact of the Kerr effect on FM-to-AM conversion in high-power lasers

Not Accessible

Your library or personal account may give you access

Abstract

In order to smooth the focal spot of high-power energetic lasers, pulses are phase-modulated. However, due to propagation impairments, phase modulation is partly converted into power modulation. This is called frequency modulation to amplitude modulation (FM-to-AM conversion). This effect may increase laser damage and thus increase operating costs. For the first time, to the best of our knowledge, we have studied the impact of the Kerr effect in this process. We have shown that when the Kerr effect is followed by a dispersive transfer function, a dramatic increase of FM-to-AM conversion may occur for a particular kind of FM-to-AM conversion that we have named “anomalous.” Hence, we should remove or compensate for one of the items of the sequence: phase modulation, anomalous FM-to-AM conversion, Kerr effect, or the dispersive function. We have assessed all these solutions, and we have found an efficient inspection method to avoid anomalous FM-to-AM conversion.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
FM-to-AM conversion in high-power lasers

Steve Hocquet, Denis Penninckx, Edouard Bordenave, Claude Gouédard, and Yves Jaouën
Appl. Opt. 47(18) 3338-3349 (2008)

Compensation of FM-to-AM conversion in high-power lasers

Huabao Cao, Xingqiang Lu, Linbo Li, Xianhua Yin, Weixin Ma, Jian Zhu, and Dianyuan Fan
Appl. Opt. 50(20) 3609-3614 (2011)

Nonsinusoidal phase modulations for high-power laser performance control: stimulated Brillouin scattering and FM-to-AM conversion

Steve Hocquet, Denis Penninckx, Jean-François Gleyze, Claude Gouédard, and Yves Jaouën
Appl. Opt. 49(7) 1104-1115 (2010)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.