Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Enhancement of unidirectional forward scattering and suppression of backward scattering in hollow silicon nanoblocks

Not Accessible

Your library or personal account may give you access

Abstract

Manipulating the light scattering direction and enhancing directivity are important research areas in integrated nanophotonic devices. Herein, a novel, to the best of our knowledge, nanoantenna composed of hollow silicon nanoblocks is designed to allow directional emission manipulation. In this device, forward scattering is enhanced and backward scattering is restrained substantially in the visible region. Owing to electric dipole resonance and magnetic dipole resonance in this nanoantenna, Kerker’s type conditions are satisfied, and the directionality of forward scattering $ G_{\rm FB} $ reaches 44.6 dB, indicating good characteristics in manipulating the light scattering direction.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Multi-wavelength unidirectional forward scattering in the visible range in an all-dielectric silicon hollow nanodisk

Jingwei Lv, Haiwei Mu, Qiang Liu, Xiaoming Zhang, Xianli Li, Chao Liu, Shasha Jiang, Tao Sun, and Paul K. Chu
Appl. Opt. 57(17) 4771-4776 (2018)

Multiple unidirectional forward scattering of hybrid metal-dielectric nanoantenna in the near-infrared region

Haiwei Mu, Jingwei Lv, Xiaoming Zhang, Xili Lu, Wei Liu, Qiang Liu, Famei Wang, Lin Yang, Chao Liu, Tao Sun, and Paul K. Chu
Opt. Mater. Express 8(11) 3410-3423 (2018)

Dual-band directional scattering with all-dielectric trimer in the near-infrared region

Haiwei Mu, Wenjing Xu, Jingwei Lv, Chunhong Xu, Famei Wang, Qiang Liu, Chao Liu, Tao Sun, and Paul K. Chu
Appl. Opt. 58(18) 5082-5089 (2019)

Data Availability

No data were generated or analyzed in the presented research.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved