Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Training strategies to minimize interchannel interference effects using supervised learning in gridless Nyquist-WDM systems

Not Accessible

Your library or personal account may give you access

Abstract

The dynamism envisioned in future high-capacity gridless optical networks requires facing several challenges in distortion mitigation, such as the mitigation of interchannel interference (ICI) effects in any optical channel without information of their adjacent channels. Machine learning (ML)-based techniques have been proposed in recent works to estimate and mitigate different optical impairments with promising results. We propose and evaluate two training strategies for supervised learning algorithms with the aim to minimize ICI effects in a gridless ${{3}} \times {{16}}$-Gbaud 16-quadrature amplitude modulation (QAM) Nyquist-wavelength-division multiplexing (WDM) system. One strategy, called updating strategy, is based on symbol training sequence, and the other one, called characterization strategy, is based on an offline training using a previous system characterization. Artificial neural networks (ANN), support vector machine (SVM), K-nearest neighbors (KNN), and extreme learning machine (ELM) algorithms are explored for both training strategies. Experimental results showed a bit error rate (BER) improvement at low training lengths for both training strategies, for instance, gains up to ${\sim}{{4}}\;{\rm{dB}}$ in terms of optical signal-to-noise ratio were achieved in a back-to-back scenario. Besides, the KNN and ELM algorithms showed significant BER reduction in transmission over 250 km optical fiber. Additionally, we carried out a brief computational complexity analysis where ELM presented only 1.9% of ANN processing time. Hence, the use of ML-based techniques could enhance the optical gridless networks performance and consequently fulfill future traffic demands.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Bit-based support vector machine nonlinear detector for millimeter-wave radio-over-fiber mobile fronthaul systems

Yue Cui, Min Zhang, Danshi Wang, Siming Liu, Ze Li, and Gee-Kung Chang
Opt. Express 25(21) 26186-26197 (2017)

Performance comparisons between machine learning and analytical models for quality of transmission estimation in wavelength-division-multiplexed systems [Invited]

Jianing Lu, Gai Zhou, Qirui Fan, Dengke Zeng, Changjian Guo, Linyue Lu, Jianqiang Li, Chongjin Xie, Chao Lu, Faisal Nadeem Khan, and Alan Pak Tao Lau
J. Opt. Commun. Netw. 13(4) B35-B44 (2021)

Machine-learning-based EDFA gain estimation [Invited]

Jiakai Yu, Shengxiang Zhu, Craig L. Gutterman, Gil Zussman, and Daniel C. Kilper
J. Opt. Commun. Netw. 13(4) B83-B91 (2021)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.