Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Terahertz plasmons in doped HgTe quantum well heterostructures: dispersion, losses, and amplification

Not Accessible

Your library or personal account may give you access

Abstract

We have calculated two-dimensional plasmon energy spectra in HgTe/CdHgTe quantum wells with normal, gapless, and inverted energy spectra with different electron concentrations, taking into account spatial dispersion of electron polarizability and plasmon interaction with the optical phonons. The spectra of the absorption coefficients of two-dimensional plasmons are found. It is shown that an increase of electron concentration in a quantum well leads to a decrease in the plasmon absorption coefficient. We have calculated the probabilities to recombine via the plasmon emission for nonequilibrium holes. The threshold concentrations of the nonequilibrium holes, above which the plasmon amplification is possible, have been calculated for various electron concentrations. It is shown that the presence of equilibrium electrons can significantly reduce the threshold hole concentration required for amplification of plasmon in the terahertz wavelength region. The dependencies of threshold hole concentration on electron concentration for different quantum wells are discussed. Gain spectra of the two-dimension plasmon are calculated.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Interband infrared photodetectors based on HgTe–CdHgTe quantum-well heterostructures

V. Ya. Aleshkin, A. A. Dubinov, S. V. Morozov, M. Ryzhii, T. Otsuji, V. Mitin, M. S. Shur, and V. Ryzhii
Opt. Mater. Express 8(5) 1349-1358 (2018)

Stimulated emission in the 2.8–3.5 μm wavelength range from Peltier cooled HgTe/CdHgTe quantum well heterostructures

M. A. Fadeev, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, A. V. Antonov, K. E. Kudryavtsev, S. A. Dvoretskii, N. N. Mikhailov, V. I. Gavrilenko, and S. V. Morozov
Opt. Express 26(10) 12755-12760 (2018)

Plasmon absorption reduction in multiple quantum well structures

V. Ya. Aleshkin and A. A. Dubinov
Appl. Opt. 61(13) 3583-3588 (2022)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.