Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical properties of biochemical compositions of microalgae within the spectral range from 300 to 1700 nm

Not Accessible

Your library or personal account may give you access

Abstract

The optical properties of biochemical compositions of microalgae are vital for the improvement of biosensor design, photobioreactor design, biofuel, and biophotonics techniques. A combination method using both the double optical pathlength transmission method (DOPTM) and the ellipsometry method (EM) is called DOPTM-EM, and it is used to acquire the optical constants of protein, lipid, and carbohydrate of Haematococcus pluvialis, Nannochloropsis sp., and Spirulina in both a solid state and a solution state within the visible and near-infrared spectral range. For different types of microalgae, the refractive indices of protein and carbohydrate in the solid state are similar to each other, but show an observed difference from lipid in the solid state. The refractive indices of protein and carbohydrate in the solution state presents a visible distinction in the researched spectral range. The absorption indices of protein, lipid, and carbohydrate in the solid state for these three types of microalgae are close to each other in the spectral range of 300–500 nm. However, an observed difference is shown in the spectral range of 500–1700 nm. For ease of application, the refractive index of biochemical composition of microalgae was fitted based on the Sellmeier equation. We believe this work can provide a reference to obtain the optical properties of biomaterial with high accuracy.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Prediction of radiative properties of spherical microalgae considering internal heterogeneity and optical constants of various components

Xingcan Li, Jinyuan Lv, Li Lin, Jian Dong, Zuodong Liu, and Jia-Yue Yang
Opt. Express 31(11) 18026-18038 (2023)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved