Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

3D shape measurement method for high-reflection surface based on fringe projection

Not Accessible

Your library or personal account may give you access

Abstract

3D measurement methods based on fringe projection have attracted extensive research. However, it is a challenge to deal with overshooting on a high-reflection or specular surface. To eliminate the saturated pixels caused by overshooting, we propose a projection intensity adaptive adjustment method. First, we project three uniform gray-level images and estimate the projection intensity of the measured surface through the captured uniform gray-level images. Then we can obtain the optimal projection fringes in the camera coordinate system. Second, a set of horizontal and vertical gray-coded patterns are used to establish a coordinate matching relationship between the projected image and the captured image. To check the decoding result of the gray-coded patterns, a set of horizontal and vertical sinusoidal fringes are used to calculate the high-reflection mapping area (HRMA) in the projector coordinate system. Through the distribution of HRMA, we can check whether the decoding is reliable or not. Finally, we project the optimal intensity fringes and obtain the measurement results. We develop a measurement system to verify the validity of the proposed method. Experimental results show that the proposed method can effectively avoid overshooting and obtain measurement results with a minimum rms error.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Efficient 3D measurement of a HDR surface based on adaptive fringe projection

Jialing Hu, Jiangping Zhu, and Pei Zhou
Appl. Opt. 61(30) 9028-9036 (2022)

High dynamic range 3D measurement technique based on adaptive fringe projection and curve fitting

Peng Xu, Jintao Liu, and Jianhua Wang
Appl. Opt. 62(13) 3265-3274 (2023)

Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement

Dong Li and Jonathan Kofman
Opt. Express 22(8) 9887-9901 (2014)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.