Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Rapid isolation method of Saccharomyces cerevisiae based on optically induced dielectrophoresis technique for fungal infection diagnosis

Not Accessible

Your library or personal account may give you access

Abstract

Saccharomyces cerevisiae(S. cerevisiae) has been classically used as a treatment for diarrhea and diarrhea-related diseases. However, cases of the fungal infections caused by S. cerevisiae have been increasing in the last two decades among immunocompromised patients, while a long time was spent on S. cerevisiae isolation clinically so it was difficult to achieve timely diagnosis the diseases. Here, a novel approach for isolation and selection of S. cerevisiae is proposed by designing a microfluidic chip with an optically induced dielectrophoresis (ODEP) system. S. cerevisiae was isolated from the surroundings by ODEP due to different dielectrophoretic forces. Two special light images were designed and used to block and separate S. cerevisiae, respectively, and several manipulation parameters of ODEP were experimentally optimized to acquire the maximum isolation efficiency of S. cerevisiae. The results on the S. cerevisiae isolation declared that the purity of the S. cerevisiae selected by the method was up to ${99.5}\% \,{{\pm}}\, {0.05}$, and the capture efficiency was up to ${65.0}\%\, {{\pm}}\, {2.5}$ within 10 min. This work provides a general method to isolate S. cerevisiae as well as other microbial cells with high accuracy and efficiency and paves a road for biological research in which the isolation of high-purity cells is required.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles

Wei Wang, Yen-Heng Lin, Ruei-Syuan Guan, Ten-Chin Wen, Tzung-Fang Guo, and Gwo-Bin Lee
Opt. Express 17(20) 17603-17613 (2009)

Manipulation of micro-particles by flexible polymer-based optically-induced dielectrophoretic devices

Shu-Ju Lin, Shih-Hsun Hung, Jun-Yuan Jeng, Tzung-Fang Guo, and Gwo-Bin Lee
Opt. Express 20(1) 583-592 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved