Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Surface-enhanced shifted excitation Raman difference spectroscopy for trace detection of fentanyl in beverages

Not Accessible

Your library or personal account may give you access

Abstract

In recognition of the misuse risks of fentanyl, there is an urgent need to develop a useful and rapid analytical method to detect and monitor the opioid drug. The surface-enhanced shifted excitation Raman difference spectroscopy (SE-SERDS) method has been demonstrated to suppress background interference and enhance Raman signals. In this study, the SE-SERDS method was used for trace detection of fentanyl in beverages. To prepare the simulated illegal drug–beverages, fentanyls were dissolved into distilled water or Mizone as a series of test samples. Based on our previous work, the surface-enhanced Raman spectroscopy detection was performed on the beverages containing fentanyl by the prepared AgNPs and the SE-SERDS spectra of test samples were collected by the dual-wavelength rapid excitation Raman difference spectroscopy system. In addition, the quantitative relationship between fentanyl concentrations and the Raman peaks was constructed by the Langmuir equation. The experimental results show that the limits of quantitation for fentanyl in distilled water and Mizone were 10 ng/mL and 200 ng/mL, respectively; the correlation coefficients for the nonlinear regression were as high as 0.9802 and 0.9794, respectively; and the relative standard deviation was less than 15%. Hence, the SE-SERDS method will be a promising method for the trace analyses of food safety and forensics.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Detection of carbamazepine in saliva based on surface-enhanced Raman spectroscopy

Ning Chen, Yanbing Yuan, Ping Lu, Luyao Wang, Xuedian Zhang, Hui Chen, and Pei Ma
Biomed. Opt. Express 12(12) 7673-7688 (2021)

Rapid and label free detection of aflatoxin B1 in alcoholic beverages with a microfluid fiber device

Huifang Chen, Fei Han, Bangning Mao, Ju Gu, Yudi Li, Chunliu Zhao, Yi Wang, Dongning Wang, and Jing Zhan
Appl. Opt. 60(7) 1924-1929 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved