Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Mid-infrared supercontinuum generation of 1.14 W in a fluoroindate fiber pumped by a fast gain-switched and mode-locked thulium-doped fiber laser system

Open Access Open Access

Abstract

We report the generation of a spectrally flat supercontinuum in a fluoroindate (${{\rm InF}_3}$) fiber with a maximum time-averaged output power of 1.14 W and a spectrum extended to 4.75 µm. The pump source was a fast gain-switched and semiconductor saturable absorber mirror mode-locked thulium Tm-doped fiber laser followed by a cascade of two Tm-doped fiber amplifiers. The repetition rates of the gain-switched pulses and mode-locked sub-pulses were 50 kHz and 111 MHz, respectively, whereas the duration of sub-pulses recorded within a gain-switched pulse envelope was ${\sim}{110}\;{\rm ps}$. This home-built pump laser system provided an output average power of 2.45 W at a central wavelength of 2 µm. To the best of our knowledge, this is the first paper on supercontinuum generation in an ${{\rm InF}_3}$ fiber pumped by a fast gain-switched and mode-locked laser system. This approach is promising for further efficient continuum generation in the mid-infrared region.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system

Jacek Swiderski, Maria Michalska, and Gwenael Maze
Opt. Express 21(7) 7851-7857 (2013)

7 W mid-infrared supercontinuum generation up to 4.7 μm in an indium-fluoride optical fiber pumped by a high-peak power thulium-doped fiber single-oscillator

G. Scurria, I. Manek-Hönninger, J. Y. Carré, A. Hildenbrand-Dhollande, and S. Bigotta
Opt. Express 28(5) 7672-7677 (2020)

High-power mid-infrared supercontinuum generation in a fluoroindate fiber with over 2 W power beyond 3.8 µm

Linyong Yang, Bin Zhang, Xuan He, Kaixin Deng, Shuailin Liu, and Jing Hou
Opt. Express 28(10) 14973-14979 (2020)

References

  • View by:

  1. K. E. Jahromi, Q. Pan, L. Hogstedt, S. M. M. Friis, A. Khodabakhsh, P. M. Moselund, and F. J. M. Harren, “Mid-infrared supercontinuum-based upconversion detection for trace gas sensing,” Opt. Express 27, 24469–24480 (2019).
    [Crossref]
  2. F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica 5, 378–381 (2018).
    [Crossref]
  3. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43, 999–1002 (2018).
    [Crossref]
  4. M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012).
    [Crossref]
  5. D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
    [Crossref]
  6. F. Keilmann and S. Amarie, “Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation,” J. Infrared Millim. Terahertz Waves 33, 479–484 (2012).
    [Crossref]
  7. K. Liu, H. Liang, S. Qu, W. Li, X. Zou, Y. Zhang, and Q. J. Wang, “High-energy mid-infrared intrapulse difference-frequency generation with 5.3% conversion efficiency driven at 3 µm,” Opt. Express 27, 37706–37713 (2019).
    [Crossref]
  8. J. Swiderski, M. Michalska, and P. Grzes, “Broadband and top-flat mid-infrared supercontinuum generation with 3.52 W time-averaged power in a ZBLAN fiber directly pumped by a 2-µm mode-locked fiber laser and amplifier,” Appl. Phys. B 124, 152 (2018).
    [Crossref]
  9. K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 µm,” Opt. Lett. 42, 2334–2337 (2017).
    [Crossref]
  10. M. Michalska, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation to ∼4.7 µm in a ZBLAN fiber pumped by an optical parametric generator,” IEEE Photon. J. 9, 1–7 (2017).
    [Crossref]
  11. S. Liang, L. Xu, Q. Fu, Y. Jung, D. P. Shepherd, D. J. Richardson, and S. Alam, “295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5-octave supercontinuum extending up to 5 µm,” Opt. Express 26, 6490–6498 (2018).
    [Crossref]
  12. T. Wu, L. Yang, Z. Dou, K. Yin, X. He, B. Zhang, and J. Hou, “Ultra-efficient, 10-watt-level mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 44, 2378–2381 (2019).
    [Crossref]
  13. P. Grzes and J. Swiderski, “Gain-switched 2-µm fiber laser system providing kilowatt peak-power mode-locked resembling pulses and its application to supercontinuum generation in fluoride fibers,” IEEE Photon. J. 10, 1–8 (2018).
    [Crossref]
  14. L. R. Robichaud, S. Duval, L. P. Pleau, V. Fortin, S. T. Bah, S. Chatigny, R. Vallée, and M. Bernier, “High-power supercontinuum generation in the mid-infrared pumped by a soliton self-frequency shifted source,” Opt. Express 28, 107–115 (2020).
    [Crossref]
  15. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
    [Crossref]
  16. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  17. S. Kedenburg, T. Steinle, F. Morz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40, 2668–2671 (2015).
    [Crossref]
  18. W. Yao, Z. Shao, C. Shen, J. Tang, Y. Zhao, and D. Shen, “Gain-switched laser diode seeded TDFA with 409 W picosecond pulses and 142 W spectrally flat supercontinuum output,” Opt. Express 27, 1276–1282 (2019).
    [Crossref]
  19. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
    [Crossref]
  20. J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 µm in a low-loss fluoroindate fiber,” Opt. Lett. 41, 1756–1759 (2016).
    [Crossref]
  21. M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
    [Crossref]
  22. F. Théberge, N. Bérubé, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallée, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photon. Res. 6, 609–613 (2018).
    [Crossref]
  23. L. Yang, B. Zhang, D. Jin, T. Wu, X. He, Y. Zhao, and J. Hou, “All-fiberized, multi-watt 2–5-µm supercontinuum laser source based on fluoroindate fiber with record conversion efficiency,” Opt. Lett. 43, 5206–5209 (2018).
    [Crossref]
  24. L. Yang, B. Zhang, X. He, K. Deng, S. Liu, and J. Hou, “High-power mid-infrared supercontinuum generation in a fluoroindate fiber with over 2 W power beyond 3.8 µm,” Opt. Express 28, 14973–14979 (2020).
    [Crossref]
  25. A. Soufiane, F. Gan, H. L’Helgoualch, and M. Poulain, “Material dispersion in optimized fluoroindate glasses,” J. Non-Cryst. Solids 184, 36–39 (1995).
    [Crossref]
  26. F. Théberge, J.-F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thiré, and F. Légaré, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38, 4683–4685 (2013).
    [Crossref]
  27. G. Scurria, I. Manek-Hönninger, J. Y. Carré, A. Hildenbrand-Dhollande, and S. Bigotta, “7 W mid-infrared supercontinuum generation up to 4.7 µm in an indium-fluoride optical fiber pumped by a high-peak power thulium-doped fiber single-oscillator,” Opt. Express 28, 7672–7677 (2020).
    [Crossref]
  28. J. Swiderski, M. Michalska, and P. Grzes, “Mode-locking and self-mode-locking-like operation in a resonantly pumped gain-switched Tm-doped fiber laser,” Opt. Commun. 453, 124406 (2019).
    [Crossref]
  29. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  30. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibres (Cambridge University, 2010).
  31. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]

2020 (3)

2019 (5)

2018 (7)

J. Swiderski, M. Michalska, and P. Grzes, “Broadband and top-flat mid-infrared supercontinuum generation with 3.52 W time-averaged power in a ZBLAN fiber directly pumped by a 2-µm mode-locked fiber laser and amplifier,” Appl. Phys. B 124, 152 (2018).
[Crossref]

F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica 5, 378–381 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43, 999–1002 (2018).
[Crossref]

P. Grzes and J. Swiderski, “Gain-switched 2-µm fiber laser system providing kilowatt peak-power mode-locked resembling pulses and its application to supercontinuum generation in fluoride fibers,” IEEE Photon. J. 10, 1–8 (2018).
[Crossref]

S. Liang, L. Xu, Q. Fu, Y. Jung, D. P. Shepherd, D. J. Richardson, and S. Alam, “295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5-octave supercontinuum extending up to 5 µm,” Opt. Express 26, 6490–6498 (2018).
[Crossref]

F. Théberge, N. Bérubé, S. Poulain, S. Cozic, L.-R. Robichaud, M. Bernier, and R. Vallée, “Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers,” Photon. Res. 6, 609–613 (2018).
[Crossref]

L. Yang, B. Zhang, D. Jin, T. Wu, X. He, Y. Zhao, and J. Hou, “All-fiberized, multi-watt 2–5-µm supercontinuum laser source based on fluoroindate fiber with record conversion efficiency,” Opt. Lett. 43, 5206–5209 (2018).
[Crossref]

2017 (3)

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 µm,” Opt. Lett. 42, 2334–2337 (2017).
[Crossref]

M. Michalska, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation to ∼4.7 µm in a ZBLAN fiber pumped by an optical parametric generator,” IEEE Photon. J. 9, 1–7 (2017).
[Crossref]

2016 (3)

2015 (1)

2014 (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

2013 (1)

2012 (2)

F. Keilmann and S. Amarie, “Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation,” J. Infrared Millim. Terahertz Waves 33, 479–484 (2012).
[Crossref]

M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2004 (1)

1995 (1)

A. Soufiane, F. Gan, H. L’Helgoualch, and M. Poulain, “Material dispersion in optimized fluoroindate glasses,” J. Non-Cryst. Solids 184, 36–39 (1995).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Aggarwal, I. D.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Alam, S.

Amarie, S.

F. Keilmann and S. Amarie, “Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation,” J. Infrared Millim. Terahertz Waves 33, 479–484 (2012).
[Crossref]

Bah, S. T.

Bang, O.

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43, 999–1002 (2018).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Bernier, M.

Bérubé, N.

Bigotta, S.

Borondics, F.

Carlson, D. R.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Carré, J. Y.

Carrée, J.-Y.

Chan, A.

Chatigny, S.

Cheng, T.

Coddington, I.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Cole, D. C.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Cozic, S.

Daigle, J.-F.

Deng, K.

Diddams, S. A.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Dou, Z.

Droste, S.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibres (Cambridge University, 2010).

Dumas, P.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Duval, S.

Farries, M.

Février, S.

Fortin, J.

Fortin, V.

Fredrick, C.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Freeman, M. J.

Friis, S. M. M.

Fu, Q.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gan, F.

A. Soufiane, F. Gan, H. L’Helgoualch, and M. Poulain, “Material dispersion in optimized fluoroindate glasses,” J. Non-Cryst. Solids 184, 36–39 (1995).
[Crossref]

Gaponov, D.

Gauthier, J.-C.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Giessen, H.

Grzes, P.

J. Swiderski, M. Michalska, and P. Grzes, “Mode-locking and self-mode-locking-like operation in a resonantly pumped gain-switched Tm-doped fiber laser,” Opt. Commun. 453, 124406 (2019).
[Crossref]

P. Grzes and J. Swiderski, “Gain-switched 2-µm fiber laser system providing kilowatt peak-power mode-locked resembling pulses and its application to supercontinuum generation in fluoride fibers,” IEEE Photon. J. 10, 1–8 (2018).
[Crossref]

J. Swiderski, M. Michalska, and P. Grzes, “Broadband and top-flat mid-infrared supercontinuum generation with 3.52 W time-averaged power in a ZBLAN fiber directly pumped by a 2-µm mode-locked fiber laser and amplifier,” Appl. Phys. B 124, 152 (2018).
[Crossref]

Harren, F. J. M.

He, X.

Hickstein, D. D.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Hideur, A.

Hildenbrand-Dhollande, A.

Hlubina, P.

M. Michalska, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation to ∼4.7 µm in a ZBLAN fiber pumped by an optical parametric generator,” IEEE Photon. J. 9, 1–7 (2017).
[Crossref]

Hodelin, J.

Hogstedt, L.

Hou, J.

Islam, M. N.

Jahromi, K. E.

Jin, D.

Jossent, M.

Jung, H.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Jung, Y.

Kedenburg, S.

Keilmann, F.

F. Keilmann and S. Amarie, “Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation,” J. Infrared Millim. Terahertz Waves 33, 479–484 (2012).
[Crossref]

Khodabakhsh, A.

Kowligy, A.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Kumar, M.

L’Helgoualch, H.

A. Soufiane, F. Gan, H. L’Helgoualch, and M. Poulain, “Material dispersion in optimized fluoroindate glasses,” J. Non-Cryst. Solids 184, 36–39 (1995).
[Crossref]

Lamb, E. S.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Lavoute, L.

Légaré, F.

Lenz, G.

Li, W.

Liang, H.

Liang, S.

Lind, A.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Liu, K.

Liu, S.

Lloyd, G. R.

Manek-Hönninger, I.

Manzur, T.

Mathieu, P.

Matsumoto, M.

Michalska, M.

J. Swiderski, M. Michalska, and P. Grzes, “Mode-locking and self-mode-locking-like operation in a resonantly pumped gain-switched Tm-doped fiber laser,” Opt. Commun. 453, 124406 (2019).
[Crossref]

J. Swiderski, M. Michalska, and P. Grzes, “Broadband and top-flat mid-infrared supercontinuum generation with 3.52 W time-averaged power in a ZBLAN fiber directly pumped by a 2-µm mode-locked fiber laser and amplifier,” Appl. Phys. B 124, 152 (2018).
[Crossref]

M. Michalska, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation to ∼4.7 µm in a ZBLAN fiber pumped by an optical parametric generator,” IEEE Photon. J. 9, 1–7 (2017).
[Crossref]

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

Mikolajczyk, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Morz, F.

Moselund, P. M.

Nagasaka, K.

Nallala, J.

Napier, B.

Neelakandan, M.

Newbury, N. R.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Ohishi, Y.

Pan, Q.

Papp, S. B.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Petersen, C. R.

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43, 999–1002 (2018).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Pleau, L. P.

Poulain, M.

A. Soufiane, F. Gan, H. L’Helgoualch, and M. Poulain, “Material dispersion in optimized fluoroindate glasses,” J. Non-Cryst. Solids 184, 36–39 (1995).
[Crossref]

Poulain, S.

Prtljaga, N.

Qu, S.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Richardson, D. J.

Robichaud, L. R.

Robichaud, L.-R.

Sandt, C.

Sanghera, J.

Schmidt, B. E.

Scurria, G.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Shao, Z.

Shaw, L. B.

Shen, C.

Shen, D.

Shepherd, D. P.

Slusher, R. E.

Soufiane, A.

A. Soufiane, F. Gan, H. L’Helgoualch, and M. Poulain, “Material dispersion in optimized fluoroindate glasses,” J. Non-Cryst. Solids 184, 36–39 (1995).
[Crossref]

Srinivasan, K.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Steinle, T.

Steinmann, A.

Stone, N.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Suzuki, T.

Swiderski, J.

J. Swiderski, M. Michalska, and P. Grzes, “Mode-locking and self-mode-locking-like operation in a resonantly pumped gain-switched Tm-doped fiber laser,” Opt. Commun. 453, 124406 (2019).
[Crossref]

P. Grzes and J. Swiderski, “Gain-switched 2-µm fiber laser system providing kilowatt peak-power mode-locked resembling pulses and its application to supercontinuum generation in fluoride fibers,” IEEE Photon. J. 10, 1–8 (2018).
[Crossref]

J. Swiderski, M. Michalska, and P. Grzes, “Broadband and top-flat mid-infrared supercontinuum generation with 3.52 W time-averaged power in a ZBLAN fiber directly pumped by a 2-µm mode-locked fiber laser and amplifier,” Appl. Phys. B 124, 152 (2018).
[Crossref]

M. Michalska, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation to ∼4.7 µm in a ZBLAN fiber pumped by an optical parametric generator,” IEEE Photon. J. 9, 1–7 (2017).
[Crossref]

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

Tang, H. X.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Tang, J.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibres (Cambridge University, 2010).

Terry, F. L.

Tezuka, H.

Théberge, F.

Thiré, N.

Tuan, T. H.

Vallée, R.

Vincent, D.

Wang, Q. J.

Ward, J.

Wojtas, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

Wu, T.

Xu, L.

Xue, X.

Yang, L.

Yao, W.

Ycas, G. G.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Yin, K.

Zhang, B.

Zhang, Y.

Zhao, Y.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Zou, X.

Appl. Opt. (1)

Appl. Phys. B (1)

J. Swiderski, M. Michalska, and P. Grzes, “Broadband and top-flat mid-infrared supercontinuum generation with 3.52 W time-averaged power in a ZBLAN fiber directly pumped by a 2-µm mode-locked fiber laser and amplifier,” Appl. Phys. B 124, 152 (2018).
[Crossref]

IEEE Photon. J. (2)

M. Michalska, P. Hlubina, and J. Swiderski, “Mid-infrared supercontinuum generation to ∼4.7 µm in a ZBLAN fiber pumped by an optical parametric generator,” IEEE Photon. J. 9, 1–7 (2017).
[Crossref]

P. Grzes and J. Swiderski, “Gain-switched 2-µm fiber laser system providing kilowatt peak-power mode-locked resembling pulses and its application to supercontinuum generation in fluoride fibers,” IEEE Photon. J. 10, 1–8 (2018).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

F. Keilmann and S. Amarie, “Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation,” J. Infrared Millim. Terahertz Waves 33, 479–484 (2012).
[Crossref]

J. Non-Cryst. Solids (1)

A. Soufiane, F. Gan, H. L’Helgoualch, and M. Poulain, “Material dispersion in optimized fluoroindate glasses,” J. Non-Cryst. Solids 184, 36–39 (1995).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Opt. Commun. (1)

J. Swiderski, M. Michalska, and P. Grzes, “Mode-locking and self-mode-locking-like operation in a resonantly pumped gain-switched Tm-doped fiber laser,” Opt. Commun. 453, 124406 (2019).
[Crossref]

Opt. Express (7)

L. Yang, B. Zhang, X. He, K. Deng, S. Liu, and J. Hou, “High-power mid-infrared supercontinuum generation in a fluoroindate fiber with over 2 W power beyond 3.8 µm,” Opt. Express 28, 14973–14979 (2020).
[Crossref]

G. Scurria, I. Manek-Hönninger, J. Y. Carré, A. Hildenbrand-Dhollande, and S. Bigotta, “7 W mid-infrared supercontinuum generation up to 4.7 µm in an indium-fluoride optical fiber pumped by a high-peak power thulium-doped fiber single-oscillator,” Opt. Express 28, 7672–7677 (2020).
[Crossref]

W. Yao, Z. Shao, C. Shen, J. Tang, Y. Zhao, and D. Shen, “Gain-switched laser diode seeded TDFA with 409 W picosecond pulses and 142 W spectrally flat supercontinuum output,” Opt. Express 27, 1276–1282 (2019).
[Crossref]

L. R. Robichaud, S. Duval, L. P. Pleau, V. Fortin, S. T. Bah, S. Chatigny, R. Vallée, and M. Bernier, “High-power supercontinuum generation in the mid-infrared pumped by a soliton self-frequency shifted source,” Opt. Express 28, 107–115 (2020).
[Crossref]

S. Liang, L. Xu, Q. Fu, Y. Jung, D. P. Shepherd, D. J. Richardson, and S. Alam, “295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5-octave supercontinuum extending up to 5 µm,” Opt. Express 26, 6490–6498 (2018).
[Crossref]

K. Liu, H. Liang, S. Qu, W. Li, X. Zou, Y. Zhang, and Q. J. Wang, “High-energy mid-infrared intrapulse difference-frequency generation with 5.3% conversion efficiency driven at 3 µm,” Opt. Express 27, 37706–37713 (2019).
[Crossref]

K. E. Jahromi, Q. Pan, L. Hogstedt, S. M. M. Friis, A. Khodabakhsh, P. M. Moselund, and F. J. M. Harren, “Mid-infrared supercontinuum-based upconversion detection for trace gas sensing,” Opt. Express 27, 24469–24480 (2019).
[Crossref]

Opt. Lett. (8)

K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 µm,” Opt. Lett. 42, 2334–2337 (2017).
[Crossref]

T. Wu, L. Yang, Z. Dou, K. Yin, X. He, B. Zhang, and J. Hou, “Ultra-efficient, 10-watt-level mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 44, 2378–2381 (2019).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43, 999–1002 (2018).
[Crossref]

S. Kedenburg, T. Steinle, F. Morz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40, 2668–2671 (2015).
[Crossref]

F. Théberge, J.-F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thiré, and F. Légaré, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38, 4683–4685 (2013).
[Crossref]

J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 µm in a low-loss fluoroindate fiber,” Opt. Lett. 41, 1756–1759 (2016).
[Crossref]

L. Yang, B. Zhang, D. Jin, T. Wu, X. He, Y. Zhao, and J. Hou, “All-fiberized, multi-watt 2–5-µm supercontinuum laser source based on fluoroindate fiber with record conversion efficiency,” Opt. Lett. 43, 5206–5209 (2018).
[Crossref]

Optica (1)

Photon. Res. (1)

Phys. Rev. Appl. (1)

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick, S. Droste, E. S. Lamb, N. R. Newbury, H. X. Tang, S. A. Diddams, and S. B. Papp, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Sci. Rep. (1)

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibres (Cambridge University, 2010).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup of SC generation. In order: semiconductor saturable absorber mirror (SESAM), fiber Bragg grating (FBG), wavelength division multiplexer (WDM), ${{\rm Er}^{3 +}}:{{\rm Yb}^{3 +}}$-doped fiber ring laser (EYDFL), ${{\rm Er}^{3 +}}$-doped fiber amplifier (EDFA), ${{\rm Er}^{3 +}}:{{\rm Yb}^{3 +}}$-doped fiber amplifier (EYDFA), laser diode (LD), ${{\rm Tm}^{3 +}}$-doped fiber (TDF), pump and signal combiner (PSC), lenses (L1–L5), optical isolator (ISO), and dichroic mirror (DM).
Fig. 2.
Fig. 2. Main characteristics of the GS-ML TDFL, showing (a) the pump 1.55 µm pulse (upper trace) and the output 2 µm laser pulse (lower trace); (b) GS pulse envelope and ML sub-pulses generated by the laser, where the inset shows a time profile of the ML sub-pulse with the highest amplitude; (c) output spectrum; (d) five ML peaks with the highest amplitude from the train.
Fig. 3.
Fig. 3. Power scaling of the final stage TDFA with 790 nm pump power. Upper and lower insets show the optical spectrum measured at the maximum output power and a stable GS-ML pulse train with a repetition rate of 50 kHz, respectively.
Fig. 4.
Fig. 4. Output SC power versus pump power launched into the ${{\rm InF}_3}$ fiber.
Fig. 5.
Fig. 5. (a) SC spectra generated at the output powers of 0.19 W, 0.58 W, and 1.14 W presented on a logarithmic scale. (b) SC spectrum at the output power of 1.14 W presented on a linear scale, and the inset shows the output spectrum part that spans from 2.1 to 4.5 µm.

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved