Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Small obstacle size prediction based on a GA-BP neural network

Not Accessible

Your library or personal account may give you access

Abstract

Accurate and effective acquisition of obstacle size parameters is the basis for environment perception, path planning, and autonomous navigation of mobile robots, and is the key to improve the walking performance of mobile robots. In this paper, a generic algorithm-back propagation (GA-BP) neural network-based method for small obstacle size prediction is proposed for mobile robots to perceive the environment quantitatively. A machine vision-based small obstacle size measurement experiment was designed, and 228 sets of sample data were obtained. A genetic algorithm optimized back propagation neural network was used to build a small obstacle size prediction model with obstacle pixel width, pixel height, pixel area, and obstacle-to-camera distance as input parameters and actual obstacle width, actual height, and actual area as output parameters. The results show that the correlation coefficient (${R^2}$) between the predicted and expected values of the test data is higher than 0.999, the root mean square error is lower than 5.573, and the mean absolute percentage error is lower than 2.84%. The good agreement between its predicted and expected values indicates that the model can accurately predict the size of small obstacles. The GA-BP neural network-based small obstacle size prediction method proposed in this paper is simple to execute, has good real-time performance, and provides a new, to the best of our knowledge, way of thinking for mobile robots to acquire environmental data.

© 2021 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Diopter measurement based on an artificial neural network

Tao Jin and Xuan Gao
Appl. Opt. 60(34) 10671-10679 (2021)

Hybrid IPSO-IAGA-BPNN algorithm-based rapid multi-objective optimization of a fully parameterized spaceborne primary mirror

Tao Qin, JunLi Guo, ZiJian Jing, PeiXian Han, and Bo Qi
Appl. Opt. 60(11) 3031-3043 (2021)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.