Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optimization of coating uniformity in a simple rotation system by using a rotating shadow mask

Not Accessible

Your library or personal account may give you access

Abstract

A theoretically designed rotating shadow mask is proposed to optimize the uniformity of a simple rotation system, which makes full use of the width of the coating chamber. This method can fabricate a large-aperture optical component, the diameter of which is more than half the width of the coating machine. The rotating shadow mask is applied to correct the film thickness uniformity near the center point of simple plane substrate. The factors influencing the effect of the rotating shadow mask are simulated and discussed. Then the shape of the rotating shadow mask is theoretically designed, and the uniformity within a corresponding radius is well corrected. After determining the shape of the rotating shadow mask, an additional fixed shadow mask is calculated and used to improve the uniformity of the entire substrate. Through the application of the two shadow masks together, uniformity about 99.5% is obtained in the diameter of 640 mm on a 1100 mm coating machine.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Theoretical design of shadowing masks for uniform coatings on spherical substrates in planetary rotation systems

Cunding Liu, Mingdong Kong, Chun Guo, Weidong Gao, and Bincheng Li
Opt. Express 20(21) 23790-23797 (2012)

Optimization of thickness uniformity of optical coatings on a conical substrate in a planetary rotation system

Chun Guo, Mingdong Kong, Cunding Liu, and Bincheng Li
Appl. Opt. 52(4) B26-B32 (2013)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.