Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Edge roll-off suppression method in double-sided lapping with fixed abrasives

Not Accessible

Your library or personal account may give you access

Abstract

Edge roll-off affects the performance of key parts in precision optics processing. Currently, the evolution mechanism of edge roll-off is not understood clearly, and the existing suppression methods for edge roll-off are not qualified in real applications. To address the problem, this paper presents a new edge roll-off suppression method in double-sided lapping with fixed abrasives. The evolution mechanism of edge roll-off in double-sided lapping is analyzed by utilizing the finite element method (FEM). Three key influential factors affecting edge roll-off, including filling materials and the width of the sacrificial and filling loops, are optimized by FEM analysis and verified by experiments. By applying the optimized parameters, the depth and width of the edge roll-off on thin copper substrates are reduced by about 80% and 55%, respectively.

© 2021 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Subsurface damage of fused silica lapped by fixed-abrasive diamond pellets

Zhichao Dong, Haobo Cheng, Xu Ye, and Hon-Yuen Tam
Appl. Opt. 53(26) 5841-5849 (2014)

Edge effect modeling and experiments on active lap processing

Haitao Liu, Fan Wu, Zhige Zeng, Bin Fan, and Yongjian Wan
Opt. Express 22(9) 10761-10774 (2014)

Fluid hydrodynamic fixed abrasive grinding based on a small tool

PengFei Liu, Bin Lin, XiaoFeng Zhang, and Yan Li
Appl. Opt. 56(5) 1453-1459 (2017)

Data Availability

No data were generated or analyzed in the presented research.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.