Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Broadband terahertz tunable multi-film absorber based on phase-change material

Not Accessible

Your library or personal account may give you access

Abstract

Based on the impedance matching method, we have numerically demonstrated a broadband tunable multilayer structure in a terahertz (THz) regime. The switchable functional characteristics of the absorber can be achieved by utilizing the phase transition property of vanadium dioxide (${{\rm{VO}}_2}$). When ${{\rm{VO}}_2}$ is in the metallic state, the designed device behaves as a broadband absorber with an absorbance greater than 90% under normal incident from a 4.5 to 10 THz range. When ${{\rm{VO}}_2}$ is in the insulating state, the absorption in this band is down to near 0%. Moreover, this high absorption band shows a good polarization insensitive property and can be maintained over a range of incident angles up to 45°. Our proposed device exhibits the merits of wideband reconfigure absorbance in THz, and the absorber can be easily fabricated without involving any lithographic process, both of which are very attractive to potential THz applications such as sensing, camouflaging, and modulation of THz waves.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Dynamically tunable multifunctional terahertz absorber based on hybrid vanadium dioxide and graphene metamaterials

Jing Zhang, Jiejun Wang, Libo Yuan, and Houquan Liu
Appl. Opt. 63(5) 1385-1393 (2024)

Broadband tunable terahertz metamaterial absorber having near-perfect absorbance modulation capability based on a patterned vanadium dioxide circular patch

Qian Zhao, Xuefeng Qin, Chongyang Xu, Haiquan Zhou, and Ben-Xin Wang
Appl. Opt. 62(35) 9283-9290 (2023)

Dynamically tunable broadband absorber/reflector based on graphene and VO2 metamaterials

Xinyi Wang, Chi Ma, Lihua Xiao, Xia Li, Jiabin Yu, and Binggang Xiao
Appl. Opt. 61(7) 1646-1651 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.