Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Air resonance enhanced multiphoton ionization tagging velocimetry

Abstract

Air resonance enhanced multiphoton ionization (REMPI) tagging velocimetry (ART) was demonstrated in quiescent and supersonic flows. The ART velocimetry method utilizes a wavelength tunable laser beam to resonantly ionize molecular oxygen in air and generate additional avalanche-type ionization of molecular nitrogen. The fluorescence emissions from the first negative and first positive bands of molecular nitrogen are, thus, produced and used for flow tagging. Detailed characterization of ART was conducted, including the effects of oxygen resonance to fluoresce nitrogen, nitrogen fluorescence spectrum, laser energy deposition into quiescent flow showing minimal perturbations in flow, fluorescence lifetime study at various pressures, and line tagging without breakdown. Pointwise velocity measurements within a supersonic flow from a nominal Mach 1.5 nozzle have been conducted and characterized.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Picosecond laser electronic excitation tagging velocimetry using a picosecond burst-mode laser

Zhili Zhang, Naibo Jiang, Mikhail N. Slipchenko, Jason G. Mance, and Sukesh Roy
Appl. Opt. 60(15) C60-C67 (2021)

One-dimensional air temperature measurements by air resonance enhanced multiphoton Ionization thermometry (ART)

Walker McCord, Aleksander Clark, and Zhili Zhang
Opt. Express 30(11) 18539-18551 (2022)

Fiber-coupled ultrashort-pulse-laser-based electronic-excitation tagging velocimetry

Paul S. Hsu, Naibo Jiang, Paul M. Danehy, James R. Gord, and Sukesh Roy
Appl. Opt. 57(3) 560-566 (2018)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.