Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High spectral resolution compact Offner spectrometer based on the aberration-reduced convex holographic gratings recorded by spherical waves under Rowland circle mounting

Not Accessible

Your library or personal account may give you access

Abstract

High spectral resolution, excellent imaging quality, and compact configuration have become a recent trend in push-broom imaging spectrometers. The concentric Offner imaging spectrometer has become popular due to its high optical performance and compactness. However, astigmatism is the dominant residual aberration in the Offner imaging spectrometer, which makes the meridional and sagittal images unable to be focused well and causes a deterioration in image quality and spectral resolution. In this paper, we present a compact Offner imaging spectrometer with a high resolution based on an aberration-reduced convex holographic grating (ACHG), which is recorded by spherical waves under Rowland circle mounting. The holographic aberration coefficients of ACHG and geometric aberration coefficients of the Offner imaging spectrometer are derived based on the analysis of the light-path function. Furthermore, we analyzed the relationship between holographic aberration coefficients and holographic recording parameters of ACHG under Rowland circle mounting. To balance the geometric aberration of the Offner imaging spectrometer, proper holographic aberration coefficients of the ACHG are achieved through adjusting the holographic recording parameters. The design result indicated that the Offner imaging spectrometer with ACHG provides better images than those with mechanically ruled convex grating (MRCG). Moreover, the spectral resolution is significantly improved. This lays down a theoretical basis for subsequent construction work in the Offner imaging spectrometer with holographic aberration-reduced gratings.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.