Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Electromagnetic modeling and simulation of the biophoton propagation in myelinated axon waveguide

Not Accessible

Your library or personal account may give you access

Abstract

Biophotons in the nervous system are a potential carrier of neural signals. Previous experiments and studies indicated that biophotons are closely related to the neuronal activity and can propagate along myelinated axons. We establish a multilayer electromagnetic simulation model and demonstrate that the myelinated axon waveguide has low attenuation and low dispersion and operates in a narrow bandwidth on the order of 10 nm. We also find that the operating wavelength of the waveguide is almost linearly related to the axon diameter and the number of myelin layers. Each additional layer of the myelin sheath causes the operating wavelength of the myelinated axon waveguide to shift 52.3 nm to the long-wave direction, while an increase in the axon diameter of 1.0 µm causes the operating wavelength to shift 94.5 nm to the short-wave direction. These findings well explain the tendency of the spectral redshift among different species and the spectral blueshift during the aging process of mice. Via the analysis method in this paper, we can predict the wavelength of the propagating biophotons based on the neural structure.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Distributed loss-amplification modeling for the mid-infrared signal propagating in the myelinated and demyelinated nerve

Zhiyuan Zhang, Weijie Wang, Xialian Huang, and Guo Liu
Appl. Opt. 62(32) 8606-8613 (2023)

Multiscale label-free imaging of myelin in human brain tissue with polarization-sensitive optical coherence tomography and birefringence microscopy

Nathan Blanke, Shuaibin Chang, Anna Novoseltseva, Hui Wang, David A. Boas, and Irving J. Bigio
Biomed. Opt. Express 14(11) 5946-5964 (2023)

Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy

Yan Fu, T. Brandon Huff, Han-Wei Wang, Haifeng Wang, and Ji-Xin Cheng
Opt. Express 16(24) 19396-19409 (2008)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.