Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Realization of absorption, filtering, and sensing in a single metamaterial structure combined with functional materials

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, a hybrid vanadium dioxide (${{\rm VO}_2}$)-graphene-based bifunctional metamaterial is proposed. The realization of the different functions of perfect transmission and high absorption is based on the insulator-metal phase transition of ${{\rm VO}_2}$ material. The Fermi energy level of graphene can be treated to dynamically tune the absorption and transmission rates of the metamaterial structure. As a result, when ${{\rm VO}_2}$ is in the insulating state, the designed metamaterial can be used as a filter providing three adjustable passbands with center frequencies of 1.892 THz, 1.124 THz, and 0.94 THz, and the corresponding transmittances reach 93.11%, 98.62%, and 90.01%, respectively. The filter also shows good stopband characteristics and exhibits good sensing performance at the resonant frequencies of 1.992 THz and 2.276 THz. When ${{\rm VO}_2}$ is in metal state, the metamaterial structure acts as a double-band absorber, with three absorption peaks (${\gt}{90}\%$) in the range of 0.684 THz to 0.924 THz, 2.86 THz to 3.04 THz, and 3.28 THz to 3.372 THz, respectively. The designed structure is insensitive to the polarization of vertically incident terahertz waves and still maintains good absorption performances over a large range of incidence angles. Finally, the effects of geometric parameters on the absorption and transmission properties of the hybrid bifunctional metamaterials have also been discussed. The switchable metamaterial structures proposed in this paper provide great potential in terahertz application fields, such as filtering, smart sensing, switching, tunable absorbers, and so on.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Switchable and tunable bifunctional THz metamaterial absorber

Baohe Zhang and Kai-da Xu
J. Opt. Soc. Am. B 39(3) A52-A60 (2022)

Dynamically tunable broadband absorber/reflector based on graphene and VO2 metamaterials

Xinyi Wang, Chi Ma, Lihua Xiao, Xia Li, Jiabin Yu, and Binggang Xiao
Appl. Opt. 61(7) 1646-1651 (2022)

Broadband terahertz tunable multi-film absorber based on phase-change material

Hao Peng, Ke Yang, Zhenxin Huang, and Zhi Chen
Appl. Opt. 61(11) 3101-3106 (2022)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved