Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Deep learning optical image denoising research based on principal component estimation

Not Accessible

Your library or personal account may give you access

Abstract

High-quality denoising of optical interference images usually requires preliminary prediction of the noise level. Although blind denoising can filter the image at the pixel level without noise prediction, it inevitably loses a significant amount of phase information. This paper proposes a fast and high-quality denoising algorithm for optical interference images that combines the merits of a principal component analysis (PCA) and residual neural networks. The PCA is used to analyze the image noise and, in turn, establishes an accurate mapping between the estimated and true noise levels. The mapping helps to select a suitable residual neural network model for image processing, which maximizes the retention of image information and reduces the effect of noise. In addition, a comprehensive evaluation factor to account for the time complexity and denoising effect of the algorithm is proposed, since time complexity can be a dominant concern in some cases of actual measurement. The performance of the denoising algorithm and the effectiveness of the evaluation criterion are demonstrated to be high by processing a set of optical interference images and benchmarking with other denoising algorithms. The proposed algorithm outperforms the previously reported counterparts in a specific area of optical interference image preprocessing and provides an alternative paradigm for other denoising problems of optics, such as holograms and structured light measurements.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Learning-based denoising for polarimetric images

Xiaobo Li, Haiyu Li, Yang Lin, Jianhua Guo, Jingyu Yang, Huanjing Yue, Kun Li, Chuan Li, Zhenzhou Cheng, Haofeng Hu, and Tiegen Liu
Opt. Express 28(11) 16309-16321 (2020)

Reducing speckle in anterior segment optical coherence tomography images based on a convolutional neural network

Liansheng Liu, Zuopan Zhai, Ting Zhang, and Licheng Fan
Appl. Opt. 60(35) 10964-10974 (2021)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved