Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Practical underwater quantum key distribution based on decoy-state BB84 protocol

Not Accessible

Your library or personal account may give you access

Abstract

Polarization encoding quantum key distribution has been proven to be a reliable method to build a secure communication system. It has already been used in an inter-city fiber channel and near-Earth atmosphere channel, leaving an underwater channel the last barrier to conquer. Here we demonstrate a decoy-state BB84 quantum key distribution system over a water channel with a compact system design for future experiments in the ocean. In the system, a multiple-intensity modulated laser module is designed to produce the light pulses of quantum states, including signal state, decoy state, and vacuum state. Classical communication and synchronization are realized by wireless optical transmission. Multiple filtering techniques and wavelength division multiplexing are further used to avoid cross talk of different lights. We test the performance of the system and obtain a final key rate of 245.6 bps with an average quantum bit error rate of 1.91% over a 2.4 m water channel, in which the channel attenuation is 16.35 dB. Numerical simulation shows that the system can tolerate up to 21.7 dB total channel loss and can still generate secure keys in 277.9 m Jerlov type I ocean channel.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Experimental demonstration of underwater decoy-state quantum key distribution with all-optical transmission

Yonghe Yu, Wendong Li, Yu Wei, Yang Yang, Shanchuan Dong, Tian Qian, Shuo Wang, Qiming Zhu, Shangshuai Zheng, Xinjian Zhang, and Yongjian Gu
Opt. Express 29(19) 30506-30519 (2021)

Performance of underwater quantum key distribution with polarization encoding

Shi-Cheng Zhao, Xin-Hong Han, Ya Xiao, Yuan Shen, Yong-Jian Gu, and Wen-Dong Li
J. Opt. Soc. Am. A 36(5) 883-892 (2019)

Performance analysis of decoy state quantum key distribution over underwater turbulence channels

Amir Hossein Fahim Raouf, Majid Safari, and Murat Uysal
J. Opt. Soc. Am. B 39(6) 1470-1478 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved