Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Computed tomography in resolving flame topology with internal optical blockage involved

Not Accessible

Your library or personal account may give you access

Abstract

This work reports the modification and optimization of a computed tomography (CT) algorithm to become capable of resolving an optical field with internal optical blockage (IOB) present. The IOB—practically, the opaque mechanical parts installed inside the measurement domain—prevents a portion of emitted light from transmitting to optical sensors. Such blockage disrupts the line-of-sight intensity integration on recorded projections and eventually leads to incorrect reconstructions. In the modified algorithm developed in this work, the positions of the obstacle are measured a priori, and then the discretized optical fields (i.e., voxels) are classified as those that participate in the CT process (named effective voxels) and those that are expelled, based on the relative positions of the imaging sensors, IOB, and light signal distribution. Finally, the effective voxels can be iteratively reconstructed by combining their projections on sensors that provide direct observation. Moreover, the impact of IOB on reconstruction accuracy is discussed under different sensor arrangements to provide hands-on guidance on sensor orientation selection in practical CT problems. The modified algorithm and sensor arrangement strategy are both numerically and experimentally validated by simulated phantoms and a two-branch premixed laminar flame in this work.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Correlation-based view registration for 3D tomography

Haiyan Chen, Chen Ling, Yue Wu, Yu Gao, and Yikai Li
Appl. Opt. 61(10) 2620-2628 (2022)

Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence

Khadijeh Mohri, Simon Görs, Jonathan Schöler, Andreas Rittler, Thomas Dreier, Christof Schulz, and Andreas Kempf
Appl. Opt. 56(26) 7385-7395 (2017)

Learning implicit light propagation from multi-flame projections for computed tomography of chemiluminescence

Hujie Pan, Fuhao Zhang, Xuesong Li, and Min Xu
Appl. Opt. 60(22) 6469-6478 (2021)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.