Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Three-dimensional measurement method based on a three-step phase-shifting fringe and a binary fringe

Not Accessible

Your library or personal account may give you access

Abstract

Gray-code plus phase-shifting is currently a commonly used method for structured light three-dimensional (3D) measurement that is able to measure complex surfaces. However, the Gray-code fringe patterns tend to be complicated, making the measurement process time-consuming. To solve this problem and to obtain faster speed without sacrificing accuracy, a 3D measurement method based on three-step phase-shifting and a binary fringe is proposed; the method contains three phase-shifting fringe patterns and an additional binary fringe pattern. The period of the binary fringe is designed to be the same as the three-step phase-shifting fringe. Because of the specific pattern design strategy, the three-step phase-shifting algorithm is used to obtain the wrapped phase, and the connected region labeling theorem is used to calculate the fringe order. A theoretical analysis, simulation, and experiments validate the efficiency and robustness of the proposed method. It can achieve high-precision 3D measurement, which performs almost the same as the Gray-code plus phase-shifting method. Since only one additional binary fringe pattern is required, it has the potential to achieve higher measurement speed.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Three-dimensional measurement method of color fringe projection based on an improved three-step phase-shifting method

Xiaojie Duan, Guangli Liu, and Jianming Wang
Appl. Opt. 60(23) 7007-7016 (2021)

Three-dimensional shape measurement method based on composite cyclic phase coding

Zicong Zou, Yongjian Zhu, Guofeng Qin, and Dong Wang
Appl. Opt. 62(1) 246-254 (2023)

High-speed three-dimensional shape measurement based on shifting Gray-code light

Zhoujie Wu, Wenbo Guo, and Qican Zhang
Opt. Express 27(16) 22631-22644 (2019)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.