Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient calculation of optical properties of suspended-core fiber via a machine learning algorithm

Not Accessible

Your library or personal account may give you access

Abstract

Growing nonlinearity demands in mid-infrared applications place more outstanding requirements on fiber structure design. Chalcogenide suspended-core fibers (SCFs) are considered excellent candidates for mid-infrared applications due to their significant advantages in nonlinearity and dispersion management. However, traditional numerical methods for accurate modeling and optimization of SCFs often rely on the performance of computing devices and have many limitations when dealing with complex models. A machine learning algorithm is applied to calculate the optical properties of chalcogenide SCFs, including effective mode area, nonlinear coefficient, and dispersion. The established artificial neural network (ANN) model enables accurate prediction of the above optical properties of ${\rm As_2}{\rm S_3}$ SCF, for which in the wavelength range of 1.0 to 4.0 µm, the radius of the fiber core is 0.4 to 0.6 µm, and width of the cantilever is 0.06 to 0.09 µm. We demonstrate that this simple ANN model has considerable advantages over the traditional numerical calculation model in computational speed and resource utilization. In summary, the proposed model can quickly provide more accurate optical property predictions, providing a cost-effective solution for precise modeling and optimization of chalcogenide SCFs.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Machine learning approach for computing optical properties of a photonic crystal fiber

Sunny Chugh, Aamir Gulistan, Souvik Ghosh, and B. M. A. Rahman
Opt. Express 27(25) 36414-36425 (2019)

Resonance prediction and inverse design of multi-core selective couplers based on neural networks

Junjie Fan, Wei Huang, Ran Zhang, Zhiwei Gu, Binbin Song, and Shengyong Chen
Appl. Opt. 61(32) 9350-9359 (2022)

Broadband mid-infrared fiber optical parametric oscillator based on a three-hole suspended-core chalcogenide fiber

Hangyu Bai, Xiong Yang, Yizhen Wei, and Shiming Gao
Appl. Opt. 55(3) 515-521 (2016)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (8)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.