Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Cr/C multilayer growth on a heavy metal layer for upgrading of high efficiency tender x-ray gratings

Not Accessible

Your library or personal account may give you access

Abstract

To increase efficiency of single layer gratings used in the tender x-ray range, a high reflectance multilayer can be directly grown on single layer gratings. Multilayer growth quality was studied by depositing the Cr/C multilayer on a Pt single layer using flat substrates. Their structure quality and adhesion were characterized by atomic force microscopy (AFM), grazing incidence x-ray reflectivity (GIXRR), x-ray scattering (XRS), x-ray diffraction (XRD), and layer adhesion measurement. AFM results showed that the surface roughness was 0.218 nm for the multilayer without the Pt layer and 0.272 nm for the multilayer with the Pt layer. As GIXRR results showed, the average interface widths were 0.39 nm for the multilayer without the Pt layer and 0.42 nm for the multilayer with the Pt layer. XRS results indicated that the existence of a Pt layer enlarged slightly the roughness of the multilayer. Simulation results exhibited that these slight changes caused by the Pt layer had an insignificant effect on reflectivity. As XRD results displayed, the crystallization of the Pt layer had negligible effects on the crystallization of Cr in films. The layer adhesion measurement revealed that the critical loads to peel off the layer from the substrate were 84.64 mN for the multilayer without the Pt layer and 33.99 mN for the multilayer with the Pt layer. After 6 months, the latter layer structure is undamaged, demonstrating that the coating is not easily peeled off. This study proves the feasibility to upgrade a low efficiency single Pt layer grating to a highly efficient multilayer grating.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Highly efficient blazed grating with multilayer coating for tender X-ray energies

F. Senf, F. Bijkerk, F. Eggenstein, G. Gwalt, Q. Huang, R. Kruijs, O. Kutz, S. Lemke, E. Louis, M. Mertin, I. Packe, I. Rudolph, F. Schäfers, F. Siewert, A. Sokolov, J. M. Sturm, Ch. Waberski, Z. Wang, J. Wolf, T. Zeschke, and A. Erko
Opt. Express 24(12) 13220-13230 (2016)

Optimized highly efficient multilayer-coated blazed gratings for the tender X-ray region

Andrey Sokolov, Qiushi Huang, Friedmar Senf, Jiangtao Feng, Stephanie Lemke, Svyatoslav Alimov, Jeniffa Knedel, Thomas Zeschke, Oliver Kutz, Tino Seliger, Grzegorz Gwalt, Franz Schäfers, Frank Siewert, Igor V. Kozhevnikov, Runze Qi, Zhong Zhang, Wenbin Li, and Zhanshan Wang
Opt. Express 27(12) 16833-16846 (2019)

Refurbishment of W/B4C multilayers on Si substrate by etching a chromium buffer layer

Qingyan Hou, Ming Li, Rongli Cui, Peng Liu, Shuaipeng Yue, and Guangcai Chang
Opt. Express 30(26) 48042-48050 (2022)

Data availability

No data were generated or analyzed in the presented research.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved