Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Tunable dual-channel slow light in a graphene grating plasmonic waveguide

Not Accessible

Your library or personal account may give you access

Abstract

We propose a plasmonic waveguide comprising a single-layer graphene, a silica dielectric layer, and a silicon grating substrate to realize dual-channel slow surface plasmon polaritons. The dual-channel results from the introduction of two kinds of periodic structures with defects in the waveguide. According to the Bragg equation, we match the appropriate structure parameters to ensure the slow light dual-channel working around ${\lambda _1} = {9369.1}\;{\rm{nm}}$ (32 THz) and ${\lambda _2} = {7138.2}\;{\rm{nm}}$ (42 THz). The influence of the structure parameters on the slow light effect is discussed, and the largest value of the normalized delay bandwidth product (NDBP) is up to 7.38. Then, by shifting the gate voltage, obvious linear blueshift of the dual-channel is achieved. In this process, the slow light performance of the dual-channel exhibits good stability, and the average values of the NDBP are 4.5 and 4.4. Due to the flexible tunability, the waveguide may pave the way for the design of slow light devices.

© 2022 Optical Society of America

Full Article  |  PDF Article
More Like This
Dual dynamically tunable plasmon-induced transparency in H-type-graphene-based slow-light metamaterial

Enduo Gao, Zhimin Liu, Hongjian Li, Hui Xu, Zhenbin Zhang, Xiao Zhang, Xin Luo, Cuixiu Xiong, Chao Liu, Baihui Zhang, and Fengqi Zhou
J. Opt. Soc. Am. A 36(8) 1306-1311 (2019)

Dual-channel optical switch, refractive index sensor and slow light device based on a graphene metasurface

Xinpeng Jiang, Dingbo Chen, Zhaojian Zhang, Jie Huang, Kui Wen, Jie He, and Junbo Yang
Opt. Express 28(23) 34079-34092 (2020)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.