Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fading-free Φ-OTDR evaluation based on the statistical analysis of phase hopping

Not Accessible

Your library or personal account may give you access

Abstract

In phase-sensitive optical time domain reflectometry ($\Phi \text{-} {\rm OTDR}$), false phase peaks caused by interference fading have been observed experimentally; however, the statistical law has not yet been disclosed. In this work, after clarifying that the false phase peaks originate from the phase hopping of demodulated phase noise during the unwinding process, we define the phase hopping rate (PHR) to evaluate the degree of fading and study the quantitative relationship between the PHR and signal-to-noise ratio (SNR) of the measured signal through theoretical derivation and experimental verification. In addition, a moving rotated-vector-average (MRVA) method is proposed to suppress the fading and eliminate the false phase peaks. In the experiment, after MRVA processing with a 25 ns sliding window, the lowest SNR is pulled from 0.003 to 14.9, and the corresponding PHR is reduced from 0.237 to less than 0.0001, which is consistent with the theoretical analysis.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Polarization-fading suppression of Φ-OTDR with Rayleigh gray-scale pattern aggregation method

Yu Wang, Lin Xiao, Yan Li, Bin Liang, Xin Liu, Qing Bai, Hongjuan Zhang, Yan Gao, and Baoquan Jin
Appl. Opt. 60(33) 10429-10436 (2021)

Low-noise and high-sensitivity Φ-OTDR based on an optimized dual-pulse heterodyne detection scheme

Zewu Ju, Zhijie Yu, Qingkai Hou, Kang Lou, Mo Chen, Yang Lu, and Zhou Meng
Appl. Opt. 59(7) 1864-1870 (2020)

SNR dependence of measurement stability of heterodyne phase-sensitive optical time-domain reflectometry

Yang Lu, Zhijie Yu, Zewu Ju, Xiaoyang Hu, Mo Chen, and Zhou Meng
Appl. Opt. 59(21) 6333-6339 (2020)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.