Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Combined influence of the gain and dispersion of a mode-locked fiber laser on a time-stretching analog-to-digital conversion link

Not Accessible

Your library or personal account may give you access

Abstract

Using theory and experiments, we demonstrated the combined influence of the spectral gain and dispersion of a dissipative soliton mode-locked fiber laser on a time-stretching analog-to-digital conversion link without an optical amplifier. The theoretical and experimental results indicate the following: first, the amplitude and envelope shape of the stretched signal are mainly affected by the spectral gain of the dissipative soliton at different central wavelengths under a radio frequency signal of 10 GHz. Second, at the higher frequency of 25 GHz, the influence of the phase shift induced by the dispersion of different spectral ranges on the amplitude of the stretched signal becomes clearer. The amplitude of the stretched signal across all spectral ranges decrease, and the envelope shape differs from that at 10 GHz. Moreover, the wavelength at the maximum amplitude of the stretched signal changes, for which the influence of the spectral dispersion is greater than that of the spectral gain. Finally, the ratio of the amplitude at 25 GHz to that at 10 GHz at different spectral ranges are different, which indicates that the amplitude of the stretched signal at different spectral ranges is affected by the phase shift by different degrees.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser

Di Peng, Zhiyao Zhang, Zhen Zeng, Lingjie Zhang, Yanjia Lyu, Yong Liu, and Kang Xie
Opt. Express 26(6) 6519-6531 (2018)

Data availability

Data underlying the results presented in this paper are not publicly available at this point but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.