Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical fiber sensor and assembly method for measuring the tensile strain of a nickel-based directionally solidified superalloy in a high-temperature environment

Not Accessible

Your library or personal account may give you access

Abstract

Nickel-based superalloys are widely used in key hot-end components such as aero engines and industrial gas turbines due to their excellent comprehensive properties. Real-time monitoring of engine blades and other structures in high-temperature environments can promptly discover possible internal damage to the structure. Optical fiber sensing technology has unique advantages that traditional electrical sensors do not have, such as anti-electromagnetic interference, small size, light weight, and corrosion resistance. The technology is gradually replacing traditional methods and becoming an important means of structural health monitoring. We propose an optical fiber sensor and assembly method that can be used to measure the strain of a nickel-based directionally solidified superalloy in a high-temperature environment more accurately. The proposed technology is simple to manufacture and also has low cost and a high survival rate, which is of great significance for high-temperature strain measurements in aerospace and other fields.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
High-sensitivity fiber Bragg grating strain sensor of the substrate type

Ruilei Zhang, Xi Wu, Li Hong, Jiheng Jin, and Guoxi Li
Appl. Opt. 61(35) 10567-10573 (2022)

Metal-coated high-temperature strain optical fiber sensor based on cascaded air-bubble FPI-FBG structure

Jianqiao Liang, Yang Yu, Qiang Bian, Wenjie Xu, Zhencheng Wang, Shumao Zhang, Junjie Weng, Jiajian Zhu, Yong Chen, Xiaoyang Hu, Junbo Yang, and Zhenrong Zhang
Opt. Express 31(10) 16795-16811 (2023)

Dynamic large strain measurement under high-temperature environment using a modified FBG sensor and plasma surface treatment

Jindong Wang, Zhiyuan Wang, Liyang Jin, Juan Li, Jingsheng Huang, and Tao Zhu
Opt. Express 31(11) 17514-17527 (2023)

Data availability

Data underlying the results presented in this paper may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.