## Abstract

Deep learning models are state-of-the-art in compressive spectral imaging (CSI) recovery. These methods use a deep neural network (DNN) as an image generator to learn non-linear mapping from compressed measurements to the spectral image. For instance, the deep spectral prior approach uses a convolutional autoencoder (CAE) network in the optimization algorithm to recover the spectral image by using a non-linear representation. However, the CAE training is detached from the recovery problem, which does not guarantee optimal representation of the spectral images for the CSI problem. This work proposes a joint non-linear representation and recovery network (JR2net), linking the representation and recovery task into a single optimization problem. JR2net consists of an optimization-inspired network following an alternating direction method of multipliers (ADMM) formulation that learns a non-linear low-dimensional representation and simultaneously performs the spectral image recovery, trained via the end-to-end approach. Experimental results show the superiority of the proposed method with improvements up to 2.57 dB in peak signal-to-noise ratio (PSNR) and performance around 2000 times faster than state-of-the-art methods.

© 2022 Optica Publishing Group

Full Article | PDF Article**More Like This**

Jorge Bacca, Yesid Fonseca, and Henry Arguello

Appl. Opt. **60**(14) 4197-4207 (2021)

Jorge Bacca, Emmanuel Martinez, and Henry Arguello

J. Opt. Soc. Am. A **40**(4) C115-C125 (2023)

David Morales, Andrés Jerez, and Henry Arguello

Appl. Opt. **61**(9) F25-F33 (2022)