Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient pose and motion estimation of non-cooperative target based on LiDAR

Not Accessible

Your library or personal account may give you access

Abstract

In on-orbit servicing missions, autonomous close proximity operations require knowledge of the target’s pose and motion parameters. Due to the lack of prior information about the non-cooperative target in an unknown environment, the pose and motion estimation of an uncooperative target is a challenging task. In this paper, a relative position and attitude estimation method is proposed using consecutive point clouds. First, a fast plane detection method is used to extract the global features of non-cooperative targets. Compared with some other local feature-detection methods, the method mentioned in this paper is faster. Then a two-stage angle adjustment method and iterative closest point algorithm are used to register the two adjacent point clouds. Finally, an unscented Kalman filter is designed to estimate the relative pose and motion parameters (velocity and angular velocity) of the target. Experiments show that the proposed measurement method of pose and motion parameters has acceptable accuracy and good stability.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Motion prediction of tumbling uncooperative spacecraft during proximity operations

Peng Li, Mao Wang, Zhao Zhang, Bing Zhang, and Yankun Wang
Appl. Opt. 63(8) 1952-1960 (2024)

Optimization-based non-cooperative spacecraft pose estimation using stereo cameras during proximity operations

Limin Zhang, Feng Zhu, Yingming Hao, and Wang Pan
Appl. Opt. 56(15) 4522-4531 (2017)

Rectangular-structure-based pose estimation method for non-cooperative rendezvous

Limin Zhang, Feng Zhu, Yingming Hao, and Wang Pan
Appl. Opt. 57(21) 6164-6173 (2018)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved