Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fast physical random bit generation based on a chaotic optical injection system with multi-path optical feedback

Not Accessible

Your library or personal account may give you access

Abstract

Based on the chaotic signal provided by a simple chaotic system, a random bit sequence with a rate of 640 Gb/s is generated through adopting the circulating exclusive-or (CXOR) post-processing method. Such a simple chaotic system is built via a slave semiconductor laser subject to optical injection of a chaotic signal originated from a master semiconductor laser under multi-path optical feedback. First, through inspecting the dependences of the time-delay-signature (TDS) and bandwidth of the chaotic signal on some key operation parameters, optimized parameters are determined for generating a high-quality chaotic signal with a large bandwidth and low TDS. Second, the high-quality chaotic signal is converted to an 8-bit digital signal by sampling with a digital oscilloscope at 80 GSa/s. Next, through adopting the CXOR post-processing method, a bit sequence with a rate of 640 Gb/s is obtained. Finally, the randomness is estimated by the National Institute of Standard Technology (NIST) Special Publication 800-22 statistical tests, and the results demonstrate that the obtained random bit sequence can pass all the NIST tests.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source

Xi Tang, Zheng-Mao Wu, Jia-Gui Wu, Tao Deng, Jian-Jun Chen, Li Fan, Zhu-Qiang Zhong, and Guang-Qiong Xia
Opt. Express 23(26) 33130-33141 (2015)

Fast physical random bit generation using a millimeter-wave white noise source

Ya Guo, Wenjie Liu, Yimin Huang, Yuehui Sun, Romain Zinsou, Yixin He, and Ruonan Zhang
Opt. Express 30(2) 3148-3156 (2022)

Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers

Kunihito Hirano, Taiki Yamazaki, Shinichiro Morikatsu, Haruka Okumura, Hiroki Aida, Atsushi Uchida, Shigeru Yoshimori, Kazuyuki Yoshimura, Takahisa Harayama, and Peter Davis
Opt. Express 18(6) 5512-5524 (2010)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.