Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Defect extraction method for additive manufactured parts with improved learning-based image super-resolution and the Canny algorithm

Not Accessible

Your library or personal account may give you access

Abstract

Additive manufacturing (AM) is a highly competitive, low-cost, and high-degree-of-manufacturing technology. However, AM still has limitations because of some defects. Thus, defect detection technology is essential for quality enhancement in the AM process. Super-resolution (SR) technology can be utilized to improve defect image quality and enhance defect extraction performance. This study proposes a defect extraction method for additive manufactured parts with improved learning-based image SR and the Canny algorithm (LSRC), which is based on direct mapping methodology. The LSRC method is compared with the bicubic interpolation algorithm and the neighbor embedding (NE) algorithm in SR reconstruction quality and robustness. The experimental results show that the proposed LSRC method achieves satisfactory performance in terms of the averaged information entropy (E), standard deviation (SD), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM), which are 7.259, 45.301, 27.723, and 0.822, respectively. The accordingly average improvement rates of the E, SD, PSNR, and SSIM, are 0.45%, 7.15%, 5.85%, and 6.35% in comparison with the bicubic interpolation algorithm, while the comparison data are 0.97%, 13.40%, 10.55%, and 15.35% in terms of the NE algorithm. This indicates that the LSRC method is significantly better than the comparison algorithm in reconstruction quality and robustness, which is of great significance for the extraction and analysis of key defect information of additive manufactured parts.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Super-resolution reconstruction of terahertz images based on a deep-learning network with a residual channel attention mechanism

Xiuwei Yang, Dehai Zhang, Zhongmin Wang, Yanbo Zhang, Jun Wu, Biyuan Wu, and Xiaohu Wu
Appl. Opt. 61(12) 3363-3370 (2022)

Development of a multi-sensor system for defects detection in additive manufacturing

Xing Peng and Lingbao Kong
Opt. Express 30(17) 30640-30665 (2022)

Complex “zero-shot” super-resolution reconstruction algorithm for THz imaging

Ying Wang, Feng Qi, and Jinkuan Wang
Appl. Opt. 61(20) 5831-5837 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.