Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Influence of surface roughness on nanosecond laser-induced shock wave enhancement effects

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, an effective method is proposed for improving the energy of the shock waves that are generated by plasma expanding outward and colliding with another gas. Silicon targets are used as the response medium with roughness of 2.3 nm, 457.8 nm, 1.1 µm, and 37.1 µm, respectively. A 532-nm-laser with a pulse duration of 8 ns and a repetition rate of 10 Hz is used as the irradiation source. An intensified charge-coupled device (ICCD) is used to photograph the morphology of the shock waves. The time-resolved emission images of silicon plasma plumes are observed between 20–200 ns. As the surface roughness of the target increases, the intensity of the shock wave gradually increases, and the energy of the shock wave reaches up to 39.45 mJ at a roughness of 37.1 µm.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Characterization of laser-induced shock waves generated during infrared laser ablation of copper by the optical beam deflection method

Z. U. Rehman, A. Raza, H. Qayyum, S. Ullah, S. Mahmood, and A. Qayyum
Appl. Opt. 61(29) 8606-8612 (2022)

Experimental investigation of nanosecond laser-induced shock waves in water using multiple excitation beams

Zhi Yang, Hengzhu Bao, Lunan Dai, Hongchao Zhang, and Jian Lu
Opt. Express 31(13) 21845-21862 (2023)

Data availability

No data were generated or analyzed in the presented research.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.