Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Resonant toroidal metasurface as a platform for thin-film and biomaterial sensing

Not Accessible

Your library or personal account may give you access

Abstract

Toroidal resonances with weak free-space coupling have recently garnered significant research attraction toward the realization of advanced photonic devices. As a natural consequence of weak free-space coupling, toroidal resonances generally possess a high quality factor with low radiative losses. Because of these backgrounds, we have experimentally studied thin-film sensing utilizing toroidal resonance in a subwavelength planar metasurface, whose unit cell consists of near-field coupled asymmetric dual gap split-ring resonators (ASRRs). These ASRRs are placed in a mirrored configuration within the unit cell. The near-field coupled ASRRs support circulating surface currents in both resonators with opposite phases, resulting in excitation of the toroidal mode. In such a way, excited toroidal resonance can support strong light–matter interactions with external materials (analytes to be detected) placed on top of the metasurface. Further, our study reveals a sensitivity of 30 GHz/RIU while sensing AZ4533 photoresist film utilizing the toroidal mode. Such detection of thin films can be highly beneficial for the development of sensing devices for various biomolecules and dielectric materials that can be spin coated or drop casted on metasurfaces. Hence, the toroidal mode is further theoretically explored towards the detection of avian influenza virus subtypes, namely, H5N2 and H9N2. Our study reveals 6 and 9 GHz of frequency redshifts for H5N2 and H9N2, respectively, in comparison to the bare sample. Therefore, this work shows that toroidal metasurfaces can be a useful platform to sense thin films of various materials including biomaterials.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Simultaneous excitations of odd and even order resonances in plasmonic metasurfaces for an orthogonal terahertz probe

Soumyajyoti Mallick, Arun Jana, Nityananda Acharyya, and Dibakar Roy Chowdhury
Appl. Opt. 61(25) 7435-7442 (2022)

Dual-band tunable and strong circular dichroism in a metal-graphene hybrid zigzag metasurface

Ying Cui and Yongyuan Jiang
Opt. Express 30(23) 42614-42623 (2022)

Relative humidity sensing using THz metasurfaces combined with polyvinyl alcohol

Jialin Gu, Jinyuan Qin, and Zhanghua Han
Appl. Opt. 61(20) 6086-6091 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.