Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Calculation of aberration fields for freeform imaging systems using field-dependent footprints on local tangent planes

Not Accessible

Your library or personal account may give you access

Abstract

Aberration theory is a fundamental understanding of the optical aberrations and remains the best way to guide optical system design. The nodal aberration theory, which can be used to describe the aberration fields of freeform imaging systems, is limited by the small field of view (FOV) of the imaging system. In this paper, we propose a method to predict the induced aberration of Fringe Zernike terms with field-dependent footprints. The footprint of each field point is calculated in its corresponding local tangent plane of the optical surface; therefore, a more accurate prediction of the induced aberrations of Fringe Zernike terms can be achieved. Both the FOV and highly tilted architecture of freeform imaging systems are considered when calculating the footprints. Two examples are presented to verify the effectiveness of the proposed method, which we believe can provide good guidance for the design of freeform imaging systems with a relatively large FOV.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Nodal aberration properties of coaxial imaging systems using Zernike polynomial surfaces

Tong Yang, Jun Zhu, and Guofan Jin
J. Opt. Soc. Am. A 32(5) 822-836 (2015)

Theory of aberration fields for general optical systems with freeform surfaces

Kyle Fuerschbach, Jannick P. Rolland, and Kevin P. Thompson
Opt. Express 22(22) 26585-26606 (2014)

Analysis of nodal aberration properties in off-axis freeform system design

Haodong Shi, Huilin Jiang, Xin Zhang, Chao Wang, and Tao Liu
Appl. Opt. 55(24) 6782-6790 (2016)

Data availability

No data were generated or analyzed in the presented research.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.