Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Plasmonic structure: toward multifunctional optical device with controllability

Not Accessible

Your library or personal account may give you access

Abstract

Multifunctional plasmonic components are the foundation for achieving a flexible and versatile photonic integrated loop. A compact device that can transform between multiple different functions is presented. The proposed structure consists of a resonator with a rotatable oval core coupled with three waveguides. The temporal coupled-mode theory and finite-difference time-domain method reveal that embedding of the elliptical core alters the original resonance mode, and the rotation of the core can manipulate field distribution in the cavity. Specifically, two switchable operating wavelengths are obtained, and the wavelengths can be adjusted by modifying the structural parameters of the elliptical core. Ultimately, a multifunctional optical device with signal controllability can be realized through the rotation of the embedded rotor: power splitter with selectable wavelengths and splitting ratios; bandpass filter with controllable output ports, wavelengths, and transmissions; demultiplexer with tunable output ports and transmissions; and switch with variable output ports, wavelengths, and transmissions. The fabrication tolerance of the device is investigated, considering waveguide width and coupling distance. This multifunctional plasmonic device is of great significance for the design and implementation of optical networks-on-chips.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Plasmonic bandpass filter based on graphene nanoribbon

Huawei Zhuang, Fanmin Kong, Kang Li, and Shiwei Sheng
Appl. Opt. 54(10) 2558-2564 (2015)

Multifunctional plasmonic metasurface demultiplexer and wavelength-polarization controllable beam splitter

Maria I. Benetou and Kosmas L. Tsakmakidis
J. Opt. Soc. Am. B 38(9) C50-C57 (2021)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.