Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient progressive algorithm for light scattering of a multilayered concentric nanoparticle

Not Accessible

Your library or personal account may give you access

Abstract

An efficient progressive methodology is presented for the computation of multi-scattering of electromagnetic waves by a multilayered concentric nanoparticle. Instead of solving a large set of system equations as reported in other works, the proposed approach utilizes a progressive algorithm which considers two adjacent shell layers at a time, marching progressively from the innermost to the outmost layer, and requires only multiplication of ${4} \times {4}$ matrices. The progressive algorithm yields the analytical expression for the scattering parameter of the concentric particle. Moreover, the progressive algorithm allows the scattering coefficients of a specific internal layer to be computed selectively, rather than having to calculate those of all layers of the entire particle as required by other algorithms. We show that the presented progressive method has equivalent accuracy to the well-known recursive algorithm, but it is more attractive due to its lower complexity in implementation. It is shown that light scattering of both a single solid sphere and two-layered concentric shell are special cases of the proposed methodology. Case study demonstrates that the presented methodology is useful in assisting the design of a multilayered core/shell structure with maximum forward scattering feature, indicating it is applicable to the exploration of optical phenomena of nanoparticles with numerous layers. Moreover, the present progressive algorithm is further extended to the electromagnetic scattering by an eccentric multilayered particle with inner cores displaced along a line defined by the centers of the spheres, which provides extra freedoms for the design of optical core shell spherical particles.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Light scattering by a multilayer sphere

B. R. Johnson
Appl. Opt. 35(18) 3286-3296 (1996)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (78)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.