Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Schlieren imaging and spectroscopic approximation of the rotational–vibrational temperatures of a microwave discharge igniter with a resonating cavity

Not Accessible

Your library or personal account may give you access

Abstract

A microwave discharge igniter (MDI) with a resonating cavity was developed and optimized for practical applications in an internal combustion engine. In contrast to the typical microwave ignition, the resonating cavity of the MDI induces a discharge through dielectric resonance. Its source of microwave (MW) is a 2.45 GHz semiconductor oscillator that is capable of numerous oscillation patterns. To verify and demonstrate the optimum ignition performance and combustion, we varied the oscillation parameters (signal factors) of the MW to optimize the performance of the MDI using the Taguchi method. Plasma spectroscopy was used for ignition condition analysis. Two sets of microwave pulses, a first pulse followed by a second set of pulse bursts, were used to ignite a propane–air fuel. The flame kernel growth rate and O I species generation were used as the response outputs, which were obtained, respectively from Schlieren imaging and emission spectroscopy experiments. The extended pulse periods and higher MW pulse numbers of the second set of pulses improved the response outputs of the MDI. To further analyze the effect of MW oscillation patterns on plasma properties and performance, measurements were done on MW superimposed operation with the high-voltage ignition from spark plugs. The MW transmission on a typical spark plug enhanced the air plasma ignition. Higher input MW energy and more extended MW pulse widths results in increased spectral intensity and radical generation of OH, O, and ${{\rm N}_2}$. An inverse relation between the temperature and spectral intensity functions of the MW pulse width was observed, which was attributed to the cutoff density of the MW-enhanced plasma.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Microwave-enhanced laser-induced air plasma at atmospheric pressure

Yuji Ikeda and Joey Kim Soriano
Opt. Express 30(19) 33756-33766 (2022)

Ignition characteristics of methane/air premixed mixture by microwave-enhanced laser-induced breakdown plasma

Atsushi Nishiyama, Ahsa Moon, Yuji Ikeda, Jun Hayashi, and Fumiteru Akamatsu
Opt. Express 21(S6) A1094-A1101 (2013)

Supplementary Material (1)

NameDescription
Supplement 1       The supplemental document contains the tables that summarize the six signal factors used in the Taguchi Optimization Method. It also contains the correlation figure of the rotational temperatures and flame kernel growth.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.