Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Joint communication interference system design based on parameter modulation

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, a joint communication interference integration signal waveform is proposed to satisfy the need of electronic system integration in civil and military uses, and mitigate the tension of spectrum resource. We design the system structure of the integrated signal model and propose the communication receiving processing flow of the integrated system. We utilize the dense false-target jamming style to raise the constant false alarm rate detection threshold via the delay superposition of multiple groups of frequency modulation (FM) slope mismatch jamming signals, which can play a role in protecting our target from being detected. Furthermore, linear frequency modulation (LFM) signals with different FM slopes and Doppler frequencies are obtained via the modulation mapping of communication data; thus, a single LFM signal can carry $n$ bit data. Through correlation processing and frequency detection, code sequence information can be obtained to achieve communication function. The simulation results show that the integrated signal has the effect of shielding and jamming the pulse compression radar. Moreover, the system has a better bit error rate and a high communication rate, which can ensure that the communication task of sending accurate instructions is completed while implementing effective interference.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Photonics-assisted joint communication-radar system based on a QPSK-sliced linearly frequency-modulated signal

Shi Wang, Dingding Liang, and Yang Chen
Appl. Opt. 61(16) 4752-4760 (2022)

Joint communication and radar sensing functions system based on photonics at the W-band

Yanyi Wang, Jiaxuan Liu, Junjie Ding, Mingxu Wang, Feng Zhao, and Jianjun Yu
Opt. Express 30(8) 13404-13415 (2022)

Millimeter-wave joint radar and communication system based on photonic frequency-multiplying constant envelope LFM-OFDM

Wenlin Bai, Peixuan Li, Xihua Zou, Zhengchun Zhou, Wei Pan, Lianshan Yan, Bin Luo, Xuming Fang, Lingming Jiang, and Liang Chen
Opt. Express 30(15) 26407-26425 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.