Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Glucose sensor modeling based on Fano resonance excitation in titania nanotube photonic crystal coated by titanium nitride as a plasmonic material

Not Accessible

Your library or personal account may give you access

Abstract

The brilliant optical properties of plasmonic metal nitrides improve many applications. Modeling of light-confining Fano resonance based on a titanium nitride (TiN)-coated titanium oxide one-dimensional photonic crystal is investigated as a glucose sensor. There is a cavity layer filled with a glucose solution between the TiN thin layer and photonic crystals. The reflection spectrum is calculated numerically by using Bruggeman’s effective medium approximation and transfer matrix method. The effect of plasmonic layer thickness, cavity layer thickness, and the thicknesses of the titanium oxide nanotube layers are optimized to achieve a high performance sensor. The result shows that the Fano resonances shift to higher wavelengths with increasing glucose concentration. The best sensitivity of the optimized biosensor is about 3798.32 nm/RIU. Also, the sensor performance parameters such as the limit of detection, figure of merit, and quality factor are discussed. The proposed sensor can be of potential interest due to its easy fabrication and higher performance than many previous reported sensors in the sensing field.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Designing a Fano-resonance-based temperature sensor by side-coupling double cavities to waveguide in photonic crystals

Hong Wu, Hua Zhang, Feng Li, and Wei Su
Appl. Opt. 61(34) 10267-10274 (2022)

Modeling of a biosensor using Tamm resonance excited by graphene

Zaky A. Zaky and Arafa H. Aly
Appl. Opt. 60(5) 1411-1419 (2021)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.