Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

PhotoelastNet: a deep convolutional neural network for evaluating the stress field by using a single color photoelasticity image

Not Accessible

Your library or personal account may give you access

Abstract

Quantifying the stress field induced into a piece when it is loaded is important for engineering areas since it allows the possibility to characterize mechanical behaviors and fails caused by stress. For this task, digital photoelasticity has been highlighted by its visual capability of representing the stress information through images with isochromatic fringe patterns. Unfortunately, demodulating such fringes remains a complicated process that, in some cases, depends on several acquisitions, e.g., pixel-by-pixel comparisons, dynamic conditions of load applications, inconsistence corrections, dependence of users, fringe unwrapping processes, etc. Under these drawbacks and taking advantage of the power results reported on deep learning, such as the fringe unwrapping process, this paper develops a deep convolutional neural network for recovering the stress field wrapped into color fringe patterns acquired through digital photoelasticity studies. Our model relies on an untrained convolutional neural network to accurately demodulate the stress maps by inputting only one single photoelasticity image. We demonstrate that the proposed method faithfully recovers the stress field of complex fringe distributions on simulated images with an averaged performance of 92.41% according to the SSIM metric. With this, experimental cases of a disk and ring under compression were evaluated, achieving an averaged performance of 85% in the SSIM metric. These results, on the one hand, are in concordance with new tendencies in the optic community to deal with complicated problems through machine-learning strategies; on the other hand, it creates a new perspective in digital photoelasticity toward demodulating the stress field for a wider quantity of fringe distributions by requiring one single acquisition.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Accuracy improvement of demodulating the stress field with StressUnet in photoelasticity

Weiliang Zhao, Guanglei Zhang, and Jiebo Li
Appl. Opt. 61(29) 8678-8687 (2022)

Digital holographic photoelasticity

C. S. Narayanamurthy, Giancarlo Pedrini, and Wolfgang Osten
Appl. Opt. 56(13) F213-F217 (2017)

Separation of isoclinics and isochromatics from photoelastic data with a regularized phase-tracking technique

J. A. Quiroga and A. González-Cano
Appl. Opt. 39(17) 2931-2940 (2000)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (13)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.