Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laser derusting on low carbon steel surface based on coordinated application of machine vision and laser-induced breakdown spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Online monitoring and closed-loop control are essential to accurately remove the rust layer and effectively avoid damage to the substrate. A collaborative utilization of machine vision and laser-induced breakdown spectroscopy (LIBS) to monitor and control the laser derusting process on Q235B steel is reported. The optimum overlap ratio of 50% is obtained by using machine vision. Monitoring derusting with different thicknesses relies on the Pearson correlation coefficient of the LIBS spectrum between the rust layer and substrate. By developing a collaborative monitoring and control system on LabVIEW, the functions of date acquisition, coordinate transformation, and data calculation are realized to automatically control the laser derusting process on rusty steel in a large area. The cooperation of two methods can achieve high-quality laser derusting with a derusting degree of 99.1%, roughness of 1.45 µm, and extremely low oxygen content on the surface, which verifies the accuracy and practicability of the developed monitoring system. Moreover, the potentiodynamic polarization curves demonstrate that the performance of the corrosion resistance of the Q235B steel is effectively improved after laser derusting.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Passivation process in quasi-continuous laser derusting with intermediate pulse width and line-scanning method

Wei Li, Peng Du, Jun Zhang, Shudong Shi, Shujing Liu, Nianjiang Chen, Hong Zhao, and Feng Song
Appl. Opt. 53(6) 1103-1109 (2014)

Classification of steel materials by laser-induced breakdown spectroscopy coupled with support vector machines

Long Liang, Tianlong Zhang, Kang Wang, Hongsheng Tang, Xiaofeng Yang, Xiaoqin Zhu, Yixiang Duan, and Hua Li
Appl. Opt. 53(4) 544-552 (2014)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.