Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Mixture fraction measurement in turbulent non-premixed MILD jet flame using Rayleigh scattering

Abstract

Turbulent combustion of jet flames in a hot diluted coflow of combustion products is conducive to the transition from conventional flamelet combustion to a regime of moderate or intense low oxygen dilution (MILD) combustion, which is commonly characterized by a very low emission and noise. MILD combustion is also characterized by distributed combustion where the net heat release is positive across the entire combustion domain. The turbulence/chemistry interactions in this regime that determine the flame structure, local temperature, and species distribution critically depend on the mixture fraction and scalar dissipation fields. However, there are no experimental tools to measure the mixture fraction field in a distributed (MILD) combustion regime. The present work offsets this limitation by demonstrating a Rayleigh scattering-based approach to measure mixture fraction in a turbulent ethylene MILD combustion zone. 1D counterflow flame simulations enabled mapping the locally calibrated Rayleigh scattering fields to mixture fractions in the fuel-rich regions. This approach also shows very low sensitivity to the local temperature and composition. Overall, the results provide compelling evidence that the distributed heat release does not significantly impact the turbulent processes of the flow-field for the conditions examined. The measurement uncertainty from this approach and its extension to more complex fuels are also discussed. The present technique is limited to mildly turbulent, fully MILD/distributed flame with representative scalar dissipation rates.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Quantitative planar temperature imaging in turbulent non-premixed flames using filtered Rayleigh scattering

Thomas A. McManus and Jeffrey A. Sutton
Appl. Opt. 58(11) 2936-2947 (2019)

OH planar laser-induced fluorescence measurements with high spatio-temporal resolution for the study of auto-ignition

Christoph M. Arndt, Robert Schießl, and Wolfgang Meier
Appl. Opt. 58(10) C14-C22 (2019)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.