Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Testing randomness of series generated in an optical Bell’s experiment

Abstract

The generation of series of random numbers is an important and difficult problem. Appropriate measurements on entangled states have been proposed as the definitive solution to produce series of certified randomness, and quantum optical systems play a major role. However, several reports indicate that random number generators based on quantum measurements have a high rate of series rejected by standard tests of randomness. This is believed to be caused by experimental imperfections and is usually solved by using classical algorithms to extract randomness. This is acceptable to generate random numbers in a single place. In quantum key distribution (QKD) instead, if the extractor is known by an eavesdropper (a situation that cannot be ruled out), the key’s security may be menaced. We use a not-loophole-free, “toy” all-fiber-optic-based setup, mimicking a QKD one operating in the field, to generate binary series and evaluate their level of randomness according to Ville’s principle. The series are tested with a battery of indicators of statistical and algorithmic randomness and nonlinear analysis. The good performance of a simple method to get random series from rejected ones, previously reported by Solis et al. is confirmed and supported with additional arguments. Incidentally, a theoretically predicted relationship between complexity and entropy is verified. Regarding QKD, the level of randomness of series, obtained by applying Toeplitz’s extractor to rejected series, is found to be indistinguishable from the level of non-rejected raw ones.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Generation of quantum-certified random numbers using on-chip path-entangled single photons from an LED

Nicolò Leone, Stefano Azzini, Sonia Mazzucchi, Valter Moretti, Matteo Sanna, Massimo Borghi, Gioele Piccoli, Martino Bernard, Mher Ghulinyan, and Lorenzo Pavesi
Photon. Res. 11(9) 1484-1499 (2023)

Random bit generation using coherent state and threshold detectors at 1550 nanometers

Elisa F. Carneiro, Felipe Calliari, Gustavo C. Amaral, and Guilherme P. Temporão
Appl. Opt. 56(24) 6855-6860 (2017)

Ultrafast quantum random number generation based on quantum phase fluctuations

Feihu Xu, Bing Qi, Xiongfeng Ma, He Xu, Haoxuan Zheng, and Hoi-Kwong Lo
Opt. Express 20(11) 12366-12377 (2012)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.