Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Magnetically tunable ultralow threshold optical bistability by exciting LRSPR in InAs/graphene layers at the terahertz region

Not Accessible

Your library or personal account may give you access

Abstract

With the experimental corroboration employing a transfer matrix method, an analytical observation of optical bistability using long-range surface plasmon resonance (LRSPR) through the external magnetic field is presented for a very low threshold value. The proposed analytical method has been verified with the reported experimental data provided by Liu et al. [Curr. Appl. Phys. 29, 66 (2021) [CrossRef]  ]. Now theoretical analysis is further extended in the proposed multilayered structure comprising an InAs layer sandwiched between two graphene layers, whose electromagnetic response at 2 THz can be regulated by employing a magnetic field and may tune the optical bistability without modifying the geometry or the characteristics of the structure. The observed threshold intensity for the switch-up is ${6.6615} \times {{10}^4}\;{\rm W}/{{\rm cm}^2}$ at 0.001 T; thus, this analytical approach is able to achieve 2 orders lower threshold for magnetically tunable upswitching of the optical bistable process. This suggested magnetically adjustable optical bistable arrangement gives a possibility for the comprehension of optical logic gates, optic memory, opto-transistors, and switches at a low switching threshold due to extraordinary features of the composite layers due to local field amplification of the graphene layer.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Long-range surface plasmon-induced tunable ultralow threshold optical bistability using graphene sheets at terahertz frequency

Aparupa Kar, Nabamita Goswami, and Ardhendu Saha
Appl. Opt. 56(8) 2321-2329 (2017)

Low threshold optical bistability in one-dimensional gratings based on graphene plasmonics

Jun Guo, Leyong Jiang, Yue Jia, Xiaoyu Dai, Yuanjiang Xiang, and Dianyuan Fan
Opt. Express 25(6) 5972-5981 (2017)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but maybe obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (54)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.