Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Distributed optical strain sensing measurements down to cryogenic temperatures

Not Accessible

Your library or personal account may give you access

Abstract

Rayleigh backscattering (RBS)-based distributed fiber sensors technology is becoming more and more crucial in various fields such as aerospace and defense, automotive, civil, and geotechnical. This technology is measuring the naturally occurring Rayleigh backscatter level in the optical fiber core; thus, any standard single-mode telecom optical fiber can be used. The application of distributed optical fiber strain sensing in the harsh environments of the European Organization for Nuclear Research required several mechanical tests to study the accuracy of strain sensing in cryogenic conditions. This study compares the performance of a RBS-based distributed optical fiber strain sensing down to cryogenic temperatures (4.2 K) with previously validated instrumentations such as electrical strain gauges and fiber Bragg grating technologies.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Temperature and strain simultaneous sensing measurement based on an all-fiber Mach-Zehnder interferometer and fiber Bragg grating

Junjie Zhu, Wei He, Shaode Li, Zhihan Li, and Lianqing Zhu
Appl. Opt. 62(25) 6661-6671 (2023)

Temperature and strain sensitivities of a groove bonded fiber Bragg grating at room and cryogenic temperatures

Xiyong Huang, Mike Davies, Dominic A. Moseley, Erica E. Salazar, Charlie Sanabria, Owen Duke, Bart M. Ludbrook, and Rodney A. Badcock
Appl. Opt. 61(28) 8427-8434 (2022)

High-precision temperature-compensated fiber Bragg grating axial strain sensing system based on a dual-loop optoelectronic oscillator with the enhanced Vernier effect

Lingge Gao, Yiping Wang, Xiaozhong Tian, Yunhao Xiao, Qiang Liu, and Dan Zhu
Appl. Opt. 62(19) 5317-5324 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.