Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Actively tunable plasmon-induced transparency in terahertz based on Dirac semimetal metamaterials

Not Accessible

Your library or personal account may give you access

Abstract

We numerically investigate a tunable plasmon-induced transparency based on bulk Dirac semimetal (BDS) metamaterial in the terahertz band. In the unit cell, the prominent transparent peak appears to be due to the interference between the cut wires (CWs) and split-ring resonators (SRRs). An active modulation via near-field coupling is obtained by varying the Fermi level of the BDS. Introducing photoactive silicon, it will be found that once the intensity of the pump light is adjusted, a tunable transparent peak will appear. Furthermore, by shifting the coupling distance between CWs and SRRs, the depth of the transparent peak will change accordingly. Finally, we place the structure in environments with different refractive indices, which will exhibit excellent sensitivity and facilitate the application of biochemical sensors. This simple and easy-to-fabricate metamaterial structure will have excellent potential applications in modulation, filters, and detection.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Tunable multiple plasmon-induced transparency in a simple terahertz Dirac semimetal based metamaterial

Jianxing Zhao, Jianlin Song, Yao Zhou, Ruilong Zhao, and Jianhong Zhou
Opt. Mater. Express 9(8) 3325-3332 (2019)

Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial

Huan Chen, Huiyun Zhang, Xiaohan Guo, Shande Liu, and Yuping Zhang
Appl. Opt. 57(4) 752-756 (2018)

Tunable polarization-nonsensitive electromagnetically induced transparency in Dirac semimetal metamaterial at terahertz frequencies

Tongling Wang, Maoyong Cao, Yuping Zhang, and Huiyun Zhang
Opt. Mater. Express 9(4) 1562-1576 (2019)

Data availability

The data that support the findings of this study are available from the corresponding author.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.